spark NestedColumnAliasing 源码

  • 2022-10-20
  • 浏览 (207)

spark NestedColumnAliasing 代码

文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/NestedColumnAliasing.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.catalyst.optimizer

import scala.collection
import scala.collection.mutable

import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.expressions.aggregate.AggregateFunction
import org.apache.spark.sql.catalyst.plans.logical._
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.types._

/**
 * This aims to handle a nested column aliasing pattern inside the [[ColumnPruning]] optimizer rule.
 * If:
 * - A [[Project]] or its child references nested fields
 * - Not all of the fields in a nested attribute are used
 * Then:
 * - Substitute the nested field references with alias attributes
 * - Add grandchild [[Project]]s transforming the nested fields to aliases
 *
 * Example 1: Project
 * ------------------
 * Before:
 * +- Project [concat_ws(s#0.a, s#0.b) AS concat_ws(s.a, s.b)#1]
 *   +- GlobalLimit 5
 *     +- LocalLimit 5
 *       +- LocalRelation <empty>, [s#0]
 * After:
 * +- Project [concat_ws(_extract_a#2, _extract_b#3) AS concat_ws(s.a, s.b)#1]
 *   +- GlobalLimit 5
 *     +- LocalLimit 5
 *       +- Project [s#0.a AS _extract_a#2, s#0.b AS _extract_b#3]
 *         +- LocalRelation <empty>, [s#0]
 *
 * Example 2: Project above Filter
 * -------------------------------
 * Before:
 * +- Project [s#0.a AS s.a#1]
 *   +- Filter (length(s#0.b) > 2)
 *     +- GlobalLimit 5
 *       +- LocalLimit 5
 *         +- LocalRelation <empty>, [s#0]
 * After:
 * +- Project [_extract_a#2 AS s.a#1]
 *   +- Filter (length(_extract_b#3) > 2)
 *     +- GlobalLimit 5
 *       +- LocalLimit 5
 *         +- Project [s#0.a AS _extract_a#2, s#0.b AS _extract_b#3]
 *           +- LocalRelation <empty>, [s#0]
 *
 * Example 3: Nested fields with referenced parents
 * ------------------------------------------------
 * Before:
 * +- Project [s#0.a AS s.a#1, s#0.a.a1 AS s.a.a1#2]
 *   +- GlobalLimit 5
 *     +- LocalLimit 5
 *       +- LocalRelation <empty>, [s#0]
 * After:
 * +- Project [_extract_a#3 AS s.a#1, _extract_a#3.name AS s.a.a1#2]
 *   +- GlobalLimit 5
 *     +- LocalLimit 5
 *       +- Project [s#0.a AS _extract_a#3]
 *         +- LocalRelation <empty>, [s#0]
 *
 * The schema of the datasource relation will be pruned in the [[SchemaPruning]] optimizer rule.
 */
object NestedColumnAliasing {

  def unapply(plan: LogicalPlan): Option[LogicalPlan] = plan match {
    /**
     * This pattern is needed to support [[Filter]] plan cases like
     * [[Project]]->[[Filter]]->listed plan in [[canProjectPushThrough]] (e.g., [[Window]]).
     * The reason why we don't simply add [[Filter]] in [[canProjectPushThrough]] is that
     * the optimizer can hit an infinite loop during the [[PushDownPredicates]] rule.
     */
    case Project(projectList, Filter(condition, child)) if
        SQLConf.get.nestedSchemaPruningEnabled && canProjectPushThrough(child) =>
      rewritePlanIfSubsetFieldsUsed(
        plan, projectList ++ Seq(condition) ++ child.expressions, child.producedAttributes.toSeq)

    case Project(projectList, child) if
        SQLConf.get.nestedSchemaPruningEnabled && canProjectPushThrough(child) =>
      rewritePlanIfSubsetFieldsUsed(
        plan, projectList ++ child.expressions, child.producedAttributes.toSeq)

    case p if SQLConf.get.nestedSchemaPruningEnabled && canPruneOn(p) =>
      rewritePlanIfSubsetFieldsUsed(
        plan, p.expressions, p.producedAttributes.toSeq)

    case _ => None
  }

  /**
   * Rewrites a plan with aliases if only a subset of the nested fields are used.
   */
  def rewritePlanIfSubsetFieldsUsed(
      plan: LogicalPlan,
      exprList: Seq[Expression],
      exclusiveAttrs: Seq[Attribute]): Option[LogicalPlan] = {
    val attrToExtractValues = getAttributeToExtractValues(exprList, exclusiveAttrs)
    if (attrToExtractValues.isEmpty) {
      None
    } else {
      Some(rewritePlanWithAliases(plan, attrToExtractValues))
    }
  }

  /**
   * Replace nested columns to prune unused nested columns later.
   */
  def rewritePlanWithAliases(
      plan: LogicalPlan,
      attributeToExtractValues: Map[Attribute, Seq[ExtractValue]]): LogicalPlan = {
    // Each expression can contain multiple nested fields.
    // Note that we keep the original names to deliver to parquet in a case-sensitive way.
    // A new alias is created for each nested field.
    // Implementation detail: we don't use mapValues, because it creates a mutable view.
    val attributeToExtractValuesAndAliases =
      attributeToExtractValues.map { case (attr, evSeq) =>
        val evAliasSeq = evSeq.map { ev =>
          val fieldName = ev match {
            case g: GetStructField => g.extractFieldName
            case g: GetArrayStructFields => g.field.name
          }
          ev -> Alias(ev, s"_extract_$fieldName")()
        }

        attr -> evAliasSeq
      }

    val nestedFieldToAlias = attributeToExtractValuesAndAliases.values.flatten
      .map { case (field, alias) => field.canonicalized -> alias }.toMap

    // A reference attribute can have multiple aliases for nested fields.
    val attrToAliases =
      AttributeMap(attributeToExtractValuesAndAliases.mapValues(_.map(_._2)).toSeq)

    plan match {
      case Project(projectList, child) =>
        Project(
          getNewProjectList(projectList, nestedFieldToAlias),
          replaceWithAliases(child, nestedFieldToAlias, attrToAliases))

      // The operators reaching here are already guarded by [[canPruneOn]].
      case other =>
        replaceWithAliases(other, nestedFieldToAlias, attrToAliases)
    }
  }

  /**
   * Replace the [[ExtractValue]]s in a project list with aliased attributes.
   */
  def getNewProjectList(
      projectList: Seq[NamedExpression],
      nestedFieldToAlias: Map[Expression, Alias]): Seq[NamedExpression] = {
    projectList.map(_.transform {
      case f: ExtractValue if nestedFieldToAlias.contains(f.canonicalized) =>
        nestedFieldToAlias(f.canonicalized).toAttribute
    }.asInstanceOf[NamedExpression])
  }

  /**
   * Replace the grandchildren of a plan with [[Project]]s of the nested fields as aliases,
   * and replace the [[ExtractValue]] expressions with aliased attributes.
   */
  def replaceWithAliases(
      plan: LogicalPlan,
      nestedFieldToAlias: Map[Expression, Alias],
      attrToAliases: AttributeMap[Seq[Alias]]): LogicalPlan = {
    plan.withNewChildren(plan.children.map { plan =>
      Project(plan.output.flatMap(a => attrToAliases.getOrElse(a, Seq(a))), plan)
    }).transformExpressions {
      case f: ExtractValue if nestedFieldToAlias.contains(f.canonicalized) =>
        nestedFieldToAlias(f.canonicalized).toAttribute
    }
  }

  /**
   * Returns true for operators on which we can prune nested columns.
   */
  private def canPruneOn(plan: LogicalPlan) = plan match {
    case _: Aggregate => true
    case _: Expand => true
    case _ => false
  }

  /**
   * Returns true for operators through which project can be pushed.
   */
  private def canProjectPushThrough(plan: LogicalPlan) = plan match {
    case _: GlobalLimit => true
    case _: LocalLimit => true
    case _: Repartition => true
    case _: Sample => true
    case _: RepartitionByExpression => true
    case _: RebalancePartitions => true
    case _: Join => true
    case _: Window => true
    case _: Sort => true
    case _ => false
  }

  /**
   * Returns two types of expressions:
   * - Root references that are individually accessed
   * - [[GetStructField]] or [[GetArrayStructFields]] on top of other [[ExtractValue]]s
   *   or special expressions.
   */
  private def collectRootReferenceAndExtractValue(e: Expression): Seq[Expression] = e match {
    case _: AttributeReference => Seq(e)
    case GetStructField(_: ExtractValue | _: AttributeReference, _, _) => Seq(e)
    case GetArrayStructFields(_: MapValues |
                              _: MapKeys |
                              _: ExtractValue |
                              _: AttributeReference, _, _, _, _) => Seq(e)
    case es if es.children.nonEmpty => es.children.flatMap(collectRootReferenceAndExtractValue)
    case _ => Seq.empty
  }

  /**
   * Creates a map from root [[Attribute]]s to non-redundant nested [[ExtractValue]]s.
   * Nested field accessors of `exclusiveAttrs` are not considered in nested fields aliasing.
   */
  def getAttributeToExtractValues(
      exprList: Seq[Expression],
      exclusiveAttrs: Seq[Attribute],
      extractor: (Expression) => Seq[Expression] = collectRootReferenceAndExtractValue)
    : Map[Attribute, Seq[ExtractValue]] = {

    val nestedFieldReferences = new mutable.ArrayBuffer[ExtractValue]()
    val otherRootReferences = new mutable.ArrayBuffer[AttributeReference]()
    exprList.foreach { e =>
      extractor(e).foreach {
        // we can not alias the attr from lambda variable whose expr id is not available
        case ev: ExtractValue if !ev.exists(_.isInstanceOf[NamedLambdaVariable]) =>
          if (ev.references.size == 1) {
            nestedFieldReferences.append(ev)
          }
        case ar: AttributeReference => otherRootReferences.append(ar)
        case _ => // ignore
      }
    }
    val exclusiveAttrSet = AttributeSet(exclusiveAttrs ++ otherRootReferences)

    // Remove cosmetic variations when we group extractors by their references
    nestedFieldReferences
      .filter(!_.references.subsetOf(exclusiveAttrSet))
      .groupBy(_.references.head.canonicalized.asInstanceOf[Attribute])
      .flatMap { case (attr: Attribute, nestedFields: collection.Seq[ExtractValue]) =>

        // Check if `ExtractValue` expressions contain any aggregate functions in their tree. Those
        // that do should not have an alias generated as it can lead to pushing the aggregate down
        // into a projection.
        def containsAggregateFunction(ev: ExtractValue): Boolean =
          ev.exists(_.isInstanceOf[AggregateFunction])

        // Remove redundant [[ExtractValue]]s if they share the same parent nest field.
        // For example, when `a.b` and `a.b.c` are in project list, we only need to alias `a.b`.
        // Because `a.b` requires all of the inner fields of `b`, we cannot prune `a.b.c`.
        val dedupNestedFields = nestedFields.filter {
          // See [[collectExtractValue]]: we only need to deal with [[GetArrayStructFields]] and
          // [[GetStructField]]
          case e @ (_: GetStructField | _: GetArrayStructFields) =>
            val child = e.children.head
            nestedFields.forall(f => !child.exists(_.semanticEquals(f)))
          case _ => true
        }
          .distinct
          // Discard [[ExtractValue]]s that contain aggregate functions.
          .filterNot(containsAggregateFunction)

        // If all nested fields of `attr` are used, we don't need to introduce new aliases.
        // By default, the [[ColumnPruning]] rule uses `attr` already.
        // Note that we need to remove cosmetic variations first, so we only count a
        // nested field once.
        val numUsedNestedFields = dedupNestedFields.map(_.canonicalized).distinct
          .map { nestedField => totalFieldNum(nestedField.dataType) }.sum
        if (dedupNestedFields.nonEmpty && numUsedNestedFields < totalFieldNum(attr.dataType)) {
          Some((attr, dedupNestedFields.toSeq))
        } else {
          None
        }
      }
  }

  /**
   * Return total number of fields of this type. This is used as a threshold to use nested column
   * pruning. It's okay to underestimate. If the number of reference is bigger than this, the parent
   * reference is used instead of nested field references.
   */
  private def totalFieldNum(dataType: DataType): Int = dataType match {
    case _: AtomicType => 1
    case StructType(fields) => fields.map(f => totalFieldNum(f.dataType)).sum
    case ArrayType(elementType, _) => totalFieldNum(elementType)
    case MapType(keyType, valueType, _) => totalFieldNum(keyType) + totalFieldNum(valueType)
    case _ => 1 // UDT and others
  }
}

/**
 * This prunes unnecessary nested columns from [[Generate]], or [[Project]] -> [[Generate]]
 */
object GeneratorNestedColumnAliasing {
  def unapply(plan: LogicalPlan): Option[LogicalPlan] = plan match {
    // Either `nestedPruningOnExpressions` or `nestedSchemaPruningEnabled` is enabled, we
    // need to prune nested columns through Project and under Generate. The difference is
    // when `nestedSchemaPruningEnabled` is on, nested columns will be pruned further at
    // file format readers if it is supported.

    // There are [[ExtractValue]] expressions on or not on the output of the generator. Generator
    // can also have different types:
    // 1. For [[ExtractValue]]s not on the output of the generator, theoretically speaking, there
    //    lots of expressions that we can push down, including non ExtractValues and GetArrayItem
    //    and GetMapValue. But to be safe, we only handle GetStructField and GetArrayStructFields.
    // 2. For [[ExtractValue]]s on the output of the generator, the situation depends on the type
    //    of the generator expression. *For now, we only support Explode*.
    //   2.1 Inline
    //       Inline takes an input of ARRAY<STRUCT<field1, field2>>, and returns an output of
    //       STRUCT<field1, field2>, the output field can be directly accessed by name "field1".
    //       In this case, we should not try to push down the ExtractValue expressions to the
    //       input of the Inline. For example:
    //       Project[field1.x AS x]
    //       - Generate[ARRAY<STRUCT<field1: STRUCT<x: int>, field2:int>>, ..., field1, field2]
    //       It is incorrect to push down the .x to the input of the Inline.
    //       A valid field pruning would be to extract all the fields that are accessed by the
    //       Project, and manually reconstruct an expression using those fields.
    //   2.2 Explode
    //       Explode takes an input of ARRAY<some_type> and returns an output of
    //       STRUCT<col: some_type>. The default field name "col" can be overwritten.
    //       If the input is MAP<key, value>, it returns STRUCT<key: key_type, value: value_type>.
    //       For the array case, it is only valid to push down GetStructField. After push down,
    //       the GetStructField becomes a GetArrayStructFields. Note that we cannot push down
    //       GetArrayStructFields, since the pushed down expression will operate on an array of
    //       array which is invalid.
    //   2.3 Stack
    //       Stack takes a sequence of expressions, and returns an output of
    //       STRUCT<col0: some_type, col1: some_type, ...>
    //       The push down is doable but more complicated in this case as the expression that
    //       operates on the col_i of the output needs to pushed down to every (kn+i)-th input
    //       expression where n is the total number of columns (or struct fields) of the output.
    case Project(projectList, g: Generate) if (SQLConf.get.nestedPruningOnExpressions ||
        SQLConf.get.nestedSchemaPruningEnabled) && canPruneGenerator(g.generator) =>
      // On top on `Generate`, a `Project` that might have nested column accessors.
      // We try to get alias maps for both project list and generator's children expressions.
      val attrToExtractValues = NestedColumnAliasing.getAttributeToExtractValues(
        projectList ++ g.generator.children, Seq.empty)
      if (attrToExtractValues.isEmpty) {
        return None
      }
      val generatorOutputSet = AttributeSet(g.qualifiedGeneratorOutput)
      var (attrToExtractValuesOnGenerator, attrToExtractValuesNotOnGenerator) =
        attrToExtractValues.partition { case (attr, _) =>
          attr.references.subsetOf(generatorOutputSet) }

      val pushedThrough = NestedColumnAliasing.rewritePlanWithAliases(
        plan, attrToExtractValuesNotOnGenerator)

      // We cannot push through if the child of generator is `MapType`.
      g.generator.children.head.dataType match {
        case _: MapType => return Some(pushedThrough)
        case ArrayType(_: ArrayType, _) => return Some(pushedThrough)
        case _ =>
      }

      if (!g.generator.isInstanceOf[ExplodeBase]) {
        return Some(pushedThrough)
      }

      // This function collects all GetStructField*(attribute) from the passed in expression.
      // GetStructField* means arbitrary levels of nesting.
      def collectNestedGetStructFields(e: Expression): Seq[Expression] = {
        // The helper function returns a tuple of
        // (nested GetStructField including the current level, all other nested GetStructField)
        def helper(e: Expression): (Seq[Expression], Seq[Expression]) = e match {
          case _: AttributeReference => (Seq(e), Seq.empty)
          case gsf: GetStructField =>
            val child_res = helper(gsf.child)
            (child_res._1.map(p => gsf.withNewChildren(Seq(p))), child_res._2)
          case other =>
            val child_res = other.children.map(helper)
            val child_res_combined = (child_res.flatMap(_._1), child_res.flatMap(_._2))
            (Seq.empty, child_res_combined._1 ++ child_res_combined._2)
        }

        val res = helper(e)
        (res._1 ++ res._2).filterNot(_.isInstanceOf[Attribute])
      }

      attrToExtractValuesOnGenerator = NestedColumnAliasing.getAttributeToExtractValues(
        attrToExtractValuesOnGenerator.flatMap(_._2).toSeq, Seq.empty,
        collectNestedGetStructFields)

      // Pruning on `Generator`'s output. We only process single field case.
      // For multiple field case, we cannot directly move field extractor into
      // the generator expression. A workaround is to re-construct array of struct
      // from multiple fields. But it will be more complicated and may not worth.
      // TODO(SPARK-34956): support multiple fields.
      val nestedFieldsOnGenerator = attrToExtractValuesOnGenerator.values.flatten.toSet
      if (nestedFieldsOnGenerator.size > 1 || nestedFieldsOnGenerator.isEmpty) {
        Some(pushedThrough)
      } else {
        // Only one nested column accessor.
        // E.g., df.select(explode($"items").as("item")).select($"item.a")
        val nestedFieldOnGenerator = nestedFieldsOnGenerator.head
        pushedThrough match {
          case p @ Project(_, newG: Generate) =>
            // Replace the child expression of `ExplodeBase` generator with
            // nested column accessor.
            // E.g., df.select(explode($"items").as("item")).select($"item.a") =>
            //       df.select(explode($"items.a").as("item.a"))
            val rewrittenG = newG.transformExpressions {
              case e: ExplodeBase =>
                val extractor = replaceGenerator(e, nestedFieldOnGenerator)
                e.withNewChildren(Seq(extractor))
            }

            // As we change the child of the generator, its output data type must be updated.
            val updatedGeneratorOutput = rewrittenG.generatorOutput
              .zip(rewrittenG.generator.elementSchema.toAttributes)
              .map { case (oldAttr, newAttr) =>
                newAttr.withExprId(oldAttr.exprId).withName(oldAttr.name)
              }
            assert(updatedGeneratorOutput.length == rewrittenG.generatorOutput.length,
              "Updated generator output must have the same length " +
                "with original generator output.")
            val updatedGenerate = rewrittenG.copy(generatorOutput = updatedGeneratorOutput)

            // Replace nested column accessor with generator output.
            val attrExprIdsOnGenerator = attrToExtractValuesOnGenerator.keys.map(_.exprId).toSet
            val updatedProject = p.withNewChildren(Seq(updatedGenerate)).transformExpressions {
              case f: GetStructField if nestedFieldsOnGenerator.contains(f) =>
                updatedGenerate.output
                  .find(a => attrExprIdsOnGenerator.contains(a.exprId))
                  .getOrElse(f)
            }
            Some(updatedProject)

          case other =>
            // We should not reach here.
            throw new IllegalStateException(s"Unreasonable plan after optimization: $other")
        }
      }

    case g: Generate if SQLConf.get.nestedSchemaPruningEnabled &&
      canPruneGenerator(g.generator) =>
      // If any child output is required by higher projection, we cannot prune on it even we
      // only use part of nested column of it. A required child output means it is referred
      // as a whole or partially by higher projection, pruning it here will cause unresolved
      // query plan.
      NestedColumnAliasing.rewritePlanIfSubsetFieldsUsed(
        plan, g.generator.children, g.requiredChildOutput)

    case _ =>
      None
  }

  /**
   * Replace the reference attribute of extractor expression with generator input.
   */
  private def replaceGenerator(generator: ExplodeBase, expr: Expression): Expression = {
    expr match {
      case a: Attribute if expr.references.contains(a) =>
        generator.child
      case g: GetStructField =>
        // We cannot simply do a transformUp instead because if we replace the attribute
        // `extractFieldName` could cause `ClassCastException` error. We need to get the
        // field name before replacing down the attribute/other extractor.
        val fieldName = g.extractFieldName
        val newChild = replaceGenerator(generator, g.child)
        ExtractValue(newChild, Literal(fieldName), SQLConf.get.resolver)
      case other =>
        other.mapChildren(replaceGenerator(generator, _))
    }
  }

  /**
   * Types of [[Generator]] on which we can prune nested fields.
   */
  def canPruneGenerator(g: Generator): Boolean = g match {
    case _: Explode => true
    case _: Stack => true
    case _: PosExplode => true
    case _: Inline => true
    case _ => false
  }
}

相关信息

spark 源码目录

相关文章

spark ComplexTypes 源码

spark CostBasedJoinReorder 源码

spark DecorrelateInnerQuery 源码

spark EliminateResolvedHint 源码

spark InjectRuntimeFilter 源码

spark InlineCTE 源码

spark LimitPushDownThroughWindow 源码

spark MergeScalarSubqueries 源码

spark NormalizeFloatingNumbers 源码

spark OptimizeCsvJsonExprs 源码

0  赞