spark Selector 源码

  • 2022-10-20
  • 浏览 (210)

spark Selector 代码

文件路径:/mllib/src/main/scala/org/apache/spark/ml/feature/Selector.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.ml.feature

import scala.collection.mutable.ArrayBuilder

import org.apache.spark.annotation.Since
import org.apache.spark.ml._
import org.apache.spark.ml.attribute.{AttributeGroup, _}
import org.apache.spark.ml.linalg._
import org.apache.spark.ml.param._
import org.apache.spark.ml.param.shared._
import org.apache.spark.ml.util._
import org.apache.spark.sql.{DataFrame, Dataset}
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.{StructField, StructType}


/**
 * Params for [[Selector]] and [[SelectorModel]].
 */
private[feature] trait SelectorParams extends Params
  with HasFeaturesCol with HasLabelCol with HasOutputCol {

  /**
   * Number of features that selector will select, ordered by ascending p-value. If the
   * number of features is less than numTopFeatures, then this will select all features.
   * Only applicable when selectorType = "numTopFeatures".
   * The default value of numTopFeatures is 50.
   *
   * @group param
   */
  @Since("3.1.0")
  final val numTopFeatures = new IntParam(this, "numTopFeatures",
    "Number of features that selector will select, ordered by ascending p-value. If the" +
      " number of features is < numTopFeatures, then this will select all features.",
    ParamValidators.gtEq(1))

  /** @group getParam */
  @Since("3.1.0")
  def getNumTopFeatures: Int = $(numTopFeatures)

  /**
   * Percentile of features that selector will select, ordered by ascending p-value.
   * Only applicable when selectorType = "percentile".
   * Default value is 0.1.
   * @group param
   */
  @Since("3.1.0")
  final val percentile = new DoubleParam(this, "percentile",
    "Percentile of features that selector will select, ordered by ascending p-value.",
    ParamValidators.inRange(0, 1))

  /** @group getParam */
  @Since("3.1.0")
  def getPercentile: Double = $(percentile)

  /**
   * The highest p-value for features to be kept.
   * Only applicable when selectorType = "fpr".
   * Default value is 0.05.
   * @group param
   */
  @Since("3.1.0")
  final val fpr = new DoubleParam(this, "fpr", "The highest p-value for features to be kept.",
    ParamValidators.inRange(0, 1))

  /** @group getParam */
  @Since("3.1.0")
  def getFpr: Double = $(fpr)

  /**
   * The upper bound of the expected false discovery rate.
   * Only applicable when selectorType = "fdr".
   * Default value is 0.05.
   * @group param
   */
  @Since("3.1.0")
  final val fdr = new DoubleParam(this, "fdr",
    "The upper bound of the expected false discovery rate.", ParamValidators.inRange(0, 1))

  /** @group getParam */
  def getFdr: Double = $(fdr)

  /**
   * The upper bound of the expected family-wise error rate.
   * Only applicable when selectorType = "fwe".
   * Default value is 0.05.
   * @group param
   */
  @Since("3.1.0")
  final val fwe = new DoubleParam(this, "fwe",
    "The upper bound of the expected family-wise error rate.", ParamValidators.inRange(0, 1))

  /** @group getParam */
  def getFwe: Double = $(fwe)

  /**
   * The selector type.
   * Supported options: "numTopFeatures" (default), "percentile", "fpr", "fdr", "fwe"
   * @group param
   */
  @Since("3.1.0")
  final val selectorType = new Param[String](this, "selectorType",
    "The selector type. Supported options: numTopFeatures, percentile, fpr, fdr, fwe",
    ParamValidators.inArray(Array("numTopFeatures", "percentile", "fpr", "fdr",
      "fwe")))

  /** @group getParam */
  @Since("3.1.0")
  def getSelectorType: String = $(selectorType)

  setDefault(numTopFeatures -> 50, percentile -> 0.1, fpr -> 0.05, fdr -> 0.05, fwe -> 0.05,
    selectorType -> "numTopFeatures")
}

/**
 * Super class for feature selectors.
 * 1. Chi-Square Selector
 * This feature selector is for categorical features and categorical labels.
 * The selector supports different selection methods: `numTopFeatures`, `percentile`, `fpr`,
 * `fdr`, `fwe`.
 *  - `numTopFeatures` chooses a fixed number of top features according to a hypothesis.
 *  - `percentile` is similar but chooses a fraction of all features instead of a fixed number.
 *  - `fpr` chooses all features whose p-value are below a threshold, thus controlling the false
 *    positive rate of selection.
 *  - `fdr` uses the [Benjamini-Hochberg procedure]
 *    (https://en.wikipedia.org/wiki/False_discovery_rate#Benjamini.E2.80.93Hochberg_procedure)
 *    to choose all features whose false discovery rate is below a threshold.
 *  - `fwe` chooses all features whose p-values are below a threshold. The threshold is scaled by
 *    1/numFeatures, thus controlling the family-wise error rate of selection.
 * By default, the selection method is `numTopFeatures`, with the default number of top features
 * set to 50.
 */
private[ml] abstract class Selector[T <: SelectorModel[T]]
  extends Estimator[T] with SelectorParams with DefaultParamsWritable {

  /** @group setParam */
  @Since("3.1.0")
  def setFeaturesCol(value: String): this.type = set(featuresCol, value)

  /** @group setParam */
  @Since("3.1.0")
  def setOutputCol(value: String): this.type = set(outputCol, value)

  /** @group setParam */
  @Since("3.1.0")
  def setNumTopFeatures(value: Int): this.type = set(numTopFeatures, value)

  /** @group setParam */
  @Since("3.1.0")
  def setPercentile(value: Double): this.type = set(percentile, value)

  /** @group setParam */
  @Since("3.1.0")
  def setFpr(value: Double): this.type = set(fpr, value)

  /** @group setParam */
  @Since("3.1.0")
  def setFdr(value: Double): this.type = set(fdr, value)

  /** @group setParam */
  @Since("3.1.0")
  def setFwe(value: Double): this.type = set(fwe, value)

  /** @group setParam */
  @Since("3.1.0")
  def setSelectorType(value: String): this.type = set(selectorType, value)

  /** @group setParam */
  @Since("3.1.0")
  def setLabelCol(value: String): this.type = set(labelCol, value)

  /**
   * get the SelectionTestResult for every feature against the label
   */
  protected[this] def getSelectionTestResult(df: DataFrame): DataFrame

  /**
   * Create a new instance of concrete SelectorModel.
   * @param indices The indices of the selected features
   * @return A new SelectorModel instance
   */
  protected[this] def createSelectorModel(
      uid: String,
      indices: Array[Int]): T

  @Since("3.1.0")
  override def fit(dataset: Dataset[_]): T = {
    transformSchema(dataset.schema, logging = true)
    val spark = dataset.sparkSession
    import spark.implicits._

    val numFeatures = DatasetUtils.getNumFeatures(dataset, $(featuresCol))
    val resultDF = getSelectionTestResult(dataset.toDF)

    def getTopIndices(k: Int): Array[Int] = {
      resultDF.sort("pValue", "featureIndex")
        .select("featureIndex")
        .limit(k)
        .as[Int]
        .collect()
    }

    val indices = $(selectorType) match {
      case "numTopFeatures" =>
        getTopIndices($(numTopFeatures))
      case "percentile" =>
        getTopIndices((numFeatures * getPercentile).toInt)
      case "fpr" =>
        resultDF.select("featureIndex")
          .where(col("pValue") < $(fpr))
          .as[Int].collect()
      case "fdr" =>
        // This uses the Benjamini-Hochberg procedure.
        // https://en.wikipedia.org/wiki/False_discovery_rate#Benjamini.E2.80.93Hochberg_procedure
        val f = $(fdr) / numFeatures
        val maxIndex = resultDF.sort("pValue", "featureIndex")
          .select("pValue")
          .as[Double].rdd
          .zipWithIndex
          .flatMap { case (pValue, index) =>
            if (pValue <= f * (index + 1)) {
              Iterator.single(index.toInt)
            } else Iterator.empty
          }.fold(-1)(math.max)
        if (maxIndex >= 0) {
          getTopIndices(maxIndex + 1)
        } else Array.emptyIntArray
      case "fwe" =>
        resultDF.select("featureIndex")
          .where(col("pValue") < $(fwe) / numFeatures)
          .as[Int].collect()
      case errorType =>
        throw new IllegalArgumentException(s"Unknown Selector Type: $errorType")
    }

    copyValues(createSelectorModel(uid, indices.sorted)
      .setParent(this))
  }

  @Since("3.1.0")
  override def transformSchema(schema: StructType): StructType = {
    SchemaUtils.checkColumnType(schema, $(featuresCol), new VectorUDT)
    SchemaUtils.checkNumericType(schema, $(labelCol))
    SchemaUtils.appendColumn(schema, $(outputCol), new VectorUDT)
  }

  @Since("3.1.0")
  override def copy(extra: ParamMap): Selector[T] = defaultCopy(extra)
}

/**
 * Model fitted by [[Selector]].
 */
@Since("3.1.0")
private[ml] abstract class SelectorModel[T <: SelectorModel[T]] (
    @Since("3.1.0") val uid: String,
    @Since("3.1.0") val selectedFeatures: Array[Int])
  extends Model[T] with SelectorParams with MLWritable {
  self: T =>

  /** @group setParam */
  @Since("3.1.0")
  def setFeaturesCol(value: String): this.type = set(featuresCol, value)

  /** @group setParam */
  @Since("3.1.0")
  def setOutputCol(value: String): this.type = set(outputCol, value)

  protected def isNumericAttribute = true

  @Since("3.1.0")
  override def transform(dataset: Dataset[_]): DataFrame = {
    val outputSchema = transformSchema(dataset.schema, logging = true)

    SelectorModel.transform(dataset, selectedFeatures.sorted, outputSchema,
      $(outputCol), $(featuresCol))
  }

  @Since("3.1.0")
  override def transformSchema(schema: StructType): StructType = {
    SchemaUtils.checkColumnType(schema, $(featuresCol), new VectorUDT)
    val newField =
      SelectorModel.prepOutputField(schema, selectedFeatures, $(outputCol), $(featuresCol),
        isNumericAttribute)
    SchemaUtils.appendColumn(schema, newField)
  }
}

private[feature] object SelectorModel {

  def transform(
      dataset: Dataset[_],
      selectedFeatures: Array[Int],
      outputSchema: StructType,
      outputCol: String,
      featuresCol: String): DataFrame = {
    val newSize = selectedFeatures.length
    val func = { vector: Vector =>
      vector match {
        case SparseVector(_, indices, values) =>
          val (newIndices, newValues) =
            compressSparse(indices, values, selectedFeatures)
          Vectors.sparse(newSize, newIndices, newValues)
        case DenseVector(values) =>
          Vectors.dense(selectedFeatures.map(values))
        case other =>
          throw new UnsupportedOperationException(
            s"Only sparse and dense vectors are supported but got ${other.getClass}.")
      }
    }

    val transformer = udf(func)
    dataset.withColumn(outputCol, transformer(col(featuresCol)),
      outputSchema(outputCol).metadata)
  }

  /**
   * Prepare the output column field, including per-feature metadata.
   */
  def prepOutputField(
      schema: StructType,
      selectedFeatures: Array[Int],
      outputCol: String,
      featuresCol: String,
      isNumericAttribute: Boolean): StructField = {
    val selector = selectedFeatures.toSet
    val origAttrGroup = AttributeGroup.fromStructField(schema(featuresCol))
    val featureAttributes: Array[Attribute] = if (origAttrGroup.attributes.nonEmpty) {
      origAttrGroup.attributes.get.zipWithIndex.filter(x => selector.contains(x._2)).map(_._1)
    } else {
      if (isNumericAttribute) {
        Array.fill[Attribute](selector.size)(NumericAttribute.defaultAttr)
      } else {
        Array.fill[Attribute](selector.size)(NominalAttribute.defaultAttr)
      }
    }
    val newAttributeGroup = new AttributeGroup(outputCol, featureAttributes)
    newAttributeGroup.toStructField()
  }

  def compressSparse(
      indices: Array[Int],
      values: Array[Double],
      selectedFeatures: Array[Int]): (Array[Int], Array[Double]) = {
    val newValues = new ArrayBuilder.ofDouble
    val newIndices = new ArrayBuilder.ofInt
    var i = 0
    var j = 0
    while (i < indices.length && j < selectedFeatures.length) {
      val indicesIdx = indices(i)
      val filterIndicesIdx = selectedFeatures(j)
      if (indicesIdx == filterIndicesIdx) {
        newIndices += j
        newValues += values(i)
        j += 1
        i += 1
      } else {
        if (indicesIdx > filterIndicesIdx) {
          j += 1
        } else {
          i += 1
        }
      }
    }
    // TODO: Sparse representation might be ineffective if (newSize ~= newValues.size)
    (newIndices.result(), newValues.result())
  }
}

相关信息

spark 源码目录

相关文章

spark Binarizer 源码

spark BucketedRandomProjectionLSH 源码

spark Bucketizer 源码

spark ChiSqSelector 源码

spark CountVectorizer 源码

spark DCT 源码

spark ElementwiseProduct 源码

spark FeatureHasher 源码

spark HashingTF 源码

spark IDF 源码

0  赞