spark ExprUtils 源码

  • 2022-10-20
  • 浏览 (221)

spark ExprUtils 代码

文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/ExprUtils.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.catalyst.expressions

import java.text.{DecimalFormat, DecimalFormatSymbols, ParsePosition}
import java.util.Locale

import org.apache.spark.sql.catalyst.analysis.TypeCheckResult
import org.apache.spark.sql.catalyst.analysis.TypeCheckResult.{DataTypeMismatch, TypeCheckSuccess}
import org.apache.spark.sql.catalyst.util.{ArrayBasedMapData, CharVarcharUtils}
import org.apache.spark.sql.errors.{QueryCompilationErrors, QueryErrorsBase, QueryExecutionErrors}
import org.apache.spark.sql.types.{DataType, MapType, StringType, StructType}
import org.apache.spark.unsafe.types.UTF8String

object ExprUtils extends QueryErrorsBase {

  def evalTypeExpr(exp: Expression): DataType = {
    if (exp.foldable) {
      exp.eval() match {
        case s: UTF8String if s != null =>
          val dataType = DataType.fromDDL(s.toString)
          CharVarcharUtils.failIfHasCharVarchar(dataType)
        case _ => throw QueryCompilationErrors.invalidSchemaStringError(exp)

      }
    } else {
      throw QueryCompilationErrors.schemaNotFoldableError(exp)
    }
  }

  def evalSchemaExpr(exp: Expression): StructType = {
    val dataType = evalTypeExpr(exp)
    if (!dataType.isInstanceOf[StructType]) {
      throw QueryCompilationErrors.schemaIsNotStructTypeError(dataType)
    }
    dataType.asInstanceOf[StructType]
  }

  def convertToMapData(exp: Expression): Map[String, String] = exp match {
    case m: CreateMap
      if m.dataType.acceptsType(MapType(StringType, StringType, valueContainsNull = false)) =>
      val arrayMap = m.eval().asInstanceOf[ArrayBasedMapData]
      ArrayBasedMapData.toScalaMap(arrayMap).map { case (key, value) =>
        key.toString -> value.toString
      }
    case m: CreateMap =>
      throw QueryCompilationErrors.keyValueInMapNotStringError(m)
    case _ =>
      throw QueryCompilationErrors.nonMapFunctionNotAllowedError
  }

  /**
   * A convenient function for schema validation in datasources supporting
   * `columnNameOfCorruptRecord` as an option.
   */
  def verifyColumnNameOfCorruptRecord(
      schema: StructType,
      columnNameOfCorruptRecord: String): Unit = {
    schema.getFieldIndex(columnNameOfCorruptRecord).foreach { corruptFieldIndex =>
      val f = schema(corruptFieldIndex)
      if (f.dataType != StringType || !f.nullable) {
        throw QueryCompilationErrors.invalidFieldTypeForCorruptRecordError
      }
    }
  }

  def getDecimalParser(locale: Locale): String => java.math.BigDecimal = {
    if (locale == Locale.US) { // Special handling the default locale for backward compatibility
      (s: String) => new java.math.BigDecimal(s.replaceAll(",", ""))
    } else {
      val decimalFormat = new DecimalFormat("", new DecimalFormatSymbols(locale))
      decimalFormat.setParseBigDecimal(true)
      (s: String) => {
        val pos = new ParsePosition(0)
        val result = decimalFormat.parse(s, pos).asInstanceOf[java.math.BigDecimal]
        if (pos.getIndex() != s.length() || pos.getErrorIndex() != -1) {
          throw QueryExecutionErrors.cannotParseDecimalError
        } else {
          result
        }
      }
    }
  }

  /**
   * Check if the schema is valid for Json
   * @param schema The schema to check.
   * @return
   *  `TypeCheckSuccess` if the schema is valid
   *  `DataTypeMismatch` with an error error if the schema is not valid
   */
  def checkJsonSchema(schema: DataType): TypeCheckResult = {
    val isInvalid = schema.existsRecursively {
      case MapType(keyType, _, _) if keyType != StringType => true
      case _ => false
    }
    if (isInvalid) {
      DataTypeMismatch(
        errorSubClass = "INVALID_JSON_MAP_KEY_TYPE",
        messageParameters = Map("schema" -> toSQLType(schema)))
    } else {
      TypeCheckSuccess
    }
  }
}

相关信息

spark 源码目录

相关文章

spark AliasHelper 源码

spark ApplyFunctionExpression 源码

spark AttributeSet 源码

spark BloomFilterMightContain 源码

spark BoundAttribute 源码

spark CallMethodViaReflection 源码

spark Cast 源码

spark CodeGeneratorWithInterpretedFallback 源码

spark DynamicPruning 源码

spark EquivalentExpressions 源码

0  赞