spark Expression 源码

  • 2022-10-20
  • 浏览 (218)

spark Expression 代码

文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Expression.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.catalyst.expressions

import java.util.Locale

import org.apache.spark.SparkException
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.analysis.{FunctionRegistry, TypeCheckResult, TypeCoercion}
import org.apache.spark.sql.catalyst.analysis.TypeCheckResult.DataTypeMismatch
import org.apache.spark.sql.catalyst.expressions.aggregate.AggregateFunction
import org.apache.spark.sql.catalyst.expressions.codegen._
import org.apache.spark.sql.catalyst.expressions.codegen.Block._
import org.apache.spark.sql.catalyst.trees.{BinaryLike, LeafLike, QuaternaryLike, SQLQueryContext, TernaryLike, TreeNode, UnaryLike}
import org.apache.spark.sql.catalyst.trees.TreePattern.{RUNTIME_REPLACEABLE, TreePattern}
import org.apache.spark.sql.catalyst.util.truncatedString
import org.apache.spark.sql.errors.{QueryErrorsBase, QueryExecutionErrors}
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.types._

////////////////////////////////////////////////////////////////////////////////////////////////////
// This file defines the basic expression abstract classes in Catalyst.
////////////////////////////////////////////////////////////////////////////////////////////////////

/**
 * An expression in Catalyst.
 *
 * If an expression wants to be exposed in the function registry (so users can call it with
 * "name(arguments...)", the concrete implementation must be a case class whose constructor
 * arguments are all Expressions types. See [[Substring]] for an example.
 *
 * There are a few important traits or abstract classes:
 *
 * - [[Nondeterministic]]: an expression that is not deterministic.
 * - [[Stateful]]: an expression that contains mutable state. For example, MonotonicallyIncreasingID
 *                 and Rand. A stateful expression is always non-deterministic.
 * - [[Unevaluable]]: an expression that is not supposed to be evaluated.
 * - [[CodegenFallback]]: an expression that does not have code gen implemented and falls back to
 *                        interpreted mode.
 * - [[NullIntolerant]]: an expression that is null intolerant (i.e. any null input will result in
 *                       null output).
 * - [[NonSQLExpression]]: a common base trait for the expressions that do not have SQL
 *                         expressions like representation. For example, `ScalaUDF`, `ScalaUDAF`,
 *                         and object `MapObjects` and `Invoke`.
 * - [[UserDefinedExpression]]: a common base trait for user-defined functions, including
 *                              UDF/UDAF/UDTF.
 * - [[HigherOrderFunction]]: a common base trait for higher order functions that take one or more
 *                            (lambda) functions and applies these to some objects. The function
 *                            produces a number of variables which can be consumed by some lambda
 *                            functions.
 * - [[NamedExpression]]: An [[Expression]] that is named.
 * - [[TimeZoneAwareExpression]]: A common base trait for time zone aware expressions.
 * - [[SubqueryExpression]]: A base interface for expressions that contain a
 *                           [[org.apache.spark.sql.catalyst.plans.logical.LogicalPlan]].
 *
 * - [[LeafExpression]]: an expression that has no child.
 * - [[UnaryExpression]]: an expression that has one child.
 * - [[BinaryExpression]]: an expression that has two children.
 * - [[TernaryExpression]]: an expression that has three children.
 * - [[QuaternaryExpression]]: an expression that has four children.
 * - [[BinaryOperator]]: a special case of [[BinaryExpression]] that requires two children to have
 *                       the same output data type.
 *
 * A few important traits used for type coercion rules:
 * - [[ExpectsInputTypes]]: an expression that has the expected input types. This trait is typically
 *                          used by operator expressions (e.g. [[Add]], [[Subtract]]) to define
 *                          expected input types without any implicit casting.
 * - [[ImplicitCastInputTypes]]: an expression that has the expected input types, which can be
 *                               implicitly castable using [[TypeCoercion.ImplicitTypeCasts]].
 * - [[ComplexTypeMergingExpression]]: to resolve output types of the complex expressions
 *                                     (e.g., [[CaseWhen]]).
 */
abstract class Expression extends TreeNode[Expression] {

  /**
   * Returns true when an expression is a candidate for static evaluation before the query is
   * executed. A typical use case: [[org.apache.spark.sql.catalyst.optimizer.ConstantFolding]]
   *
   * The following conditions are used to determine suitability for constant folding:
   *  - A [[Coalesce]] is foldable if all of its children are foldable
   *  - A [[BinaryExpression]] is foldable if its both left and right child are foldable
   *  - A [[Not]], [[IsNull]], or [[IsNotNull]] is foldable if its child is foldable
   *  - A [[Literal]] is foldable
   *  - A [[Cast]] or [[UnaryMinus]] is foldable if its child is foldable
   */
  def foldable: Boolean = false

  /**
   * Returns true when the current expression always return the same result for fixed inputs from
   * children. The non-deterministic expressions should not change in number and order. They should
   * not be evaluated during the query planning.
   *
   * Note that this means that an expression should be considered as non-deterministic if:
   * - it relies on some mutable internal state, or
   * - it relies on some implicit input that is not part of the children expression list.
   * - it has non-deterministic child or children.
   * - it assumes the input satisfies some certain condition via the child operator.
   *
   * An example would be `SparkPartitionID` that relies on the partition id returned by TaskContext.
   * By default leaf expressions are deterministic as Nil.forall(_.deterministic) returns true.
   */
  lazy val deterministic: Boolean = children.forall(_.deterministic)

  def nullable: Boolean

  /**
   * Workaround scala compiler so that we can call super on lazy vals
   */
  @transient
  private lazy val _references: AttributeSet =
    AttributeSet.fromAttributeSets(children.map(_.references))

  def references: AttributeSet = _references

  /** Returns the result of evaluating this expression on a given input Row */
  def eval(input: InternalRow = null): Any

  /**
   * Returns an [[ExprCode]], that contains the Java source code to generate the result of
   * evaluating the expression on an input row.
   *
   * @param ctx a [[CodegenContext]]
   * @return [[ExprCode]]
   */
  def genCode(ctx: CodegenContext): ExprCode = {
    ctx.subExprEliminationExprs.get(ExpressionEquals(this)).map { subExprState =>
      // This expression is repeated which means that the code to evaluate it has already been added
      // as a function before. In that case, we just re-use it.
      ExprCode(
        ctx.registerComment(this.toString),
        subExprState.eval.isNull,
        subExprState.eval.value)
    }.getOrElse {
      val isNull = ctx.freshName("isNull")
      val value = ctx.freshName("value")
      val eval = doGenCode(ctx, ExprCode(
        JavaCode.isNullVariable(isNull),
        JavaCode.variable(value, dataType)))
      reduceCodeSize(ctx, eval)
      if (eval.code.toString.nonEmpty) {
        // Add `this` in the comment.
        eval.copy(code = ctx.registerComment(this.toString) + eval.code)
      } else {
        eval
      }
    }
  }

  private def reduceCodeSize(ctx: CodegenContext, eval: ExprCode): Unit = {
    // TODO: support whole stage codegen too
    val splitThreshold = SQLConf.get.methodSplitThreshold
    if (eval.code.length > splitThreshold && ctx.INPUT_ROW != null && ctx.currentVars == null) {
      val setIsNull = if (!eval.isNull.isInstanceOf[LiteralValue]) {
        val globalIsNull = ctx.addMutableState(CodeGenerator.JAVA_BOOLEAN, "globalIsNull")
        val localIsNull = eval.isNull
        eval.isNull = JavaCode.isNullGlobal(globalIsNull)
        s"$globalIsNull = $localIsNull;"
      } else {
        ""
      }

      val javaType = CodeGenerator.javaType(dataType)
      val newValue = ctx.freshName("value")

      val funcName = ctx.freshName(nodeName)
      val funcFullName = ctx.addNewFunction(funcName,
        s"""
           |private $javaType $funcName(InternalRow ${ctx.INPUT_ROW}) {
           |  ${eval.code}
           |  $setIsNull
           |  return ${eval.value};
           |}
           """.stripMargin)

      eval.value = JavaCode.variable(newValue, dataType)
      eval.code = code"$javaType $newValue = $funcFullName(${ctx.INPUT_ROW});"
    }
  }

  /**
   * Returns Java source code that can be compiled to evaluate this expression.
   * The default behavior is to call the eval method of the expression. Concrete expression
   * implementations should override this to do actual code generation.
   *
   * @param ctx a [[CodegenContext]]
   * @param ev an [[ExprCode]] with unique terms.
   * @return an [[ExprCode]] containing the Java source code to generate the given expression
   */
  protected def doGenCode(ctx: CodegenContext, ev: ExprCode): ExprCode

  /**
   * Returns `true` if this expression and all its children have been resolved to a specific schema
   * and input data types checking passed, and `false` if it still contains any unresolved
   * placeholders or has data types mismatch.
   * Implementations of expressions should override this if the resolution of this type of
   * expression involves more than just the resolution of its children and type checking.
   */
  lazy val resolved: Boolean = childrenResolved && checkInputDataTypes().isSuccess

  /**
   * Returns the [[DataType]] of the result of evaluating this expression.  It is
   * invalid to query the dataType of an unresolved expression (i.e., when `resolved` == false).
   */
  def dataType: DataType

  /**
   * Returns true if  all the children of this expression have been resolved to a specific schema
   * and false if any still contains any unresolved placeholders.
   */
  def childrenResolved: Boolean = children.forall(_.resolved)

  /**
   * Returns an expression where a best effort attempt has been made to transform `this` in a way
   * that preserves the result but removes cosmetic variations (case sensitivity, ordering for
   * commutative operations, etc.).
   *
   * `deterministic` expressions where `this.canonicalized == other.canonicalized` will always
   * evaluate to the same result.
   *
   * The process of canonicalization is a one pass, bottum-up expression tree computation based on
   * canonicalizing children before canonicalizing the current node. There is one exception though,
   * as adjacent, same class [[CommutativeExpression]]s canonicalazion happens in a way that calling
   * `canonicalized` on the root:
   *   1. Gathers and canonicalizes the non-commutative (or commutative but not same class) child
   *      expressions of the adjacent expressions.
   *   2. Reorder the canonicalized child expressions by their hashcode.
   * This means that the lazy `cannonicalized` is called and computed only on the root of the
   * adjacent expressions.
   */
  lazy val canonicalized: Expression = {
    val canonicalizedChildren = children.map(_.canonicalized)
    withNewChildren(canonicalizedChildren)
  }

  /**
   * Returns true when two expressions will always compute the same result, even if they differ
   * cosmetically (i.e. capitalization of names in attributes may be different).
   *
   * See [[Canonicalize]] for more details.
   */
  final def semanticEquals(other: Expression): Boolean =
    deterministic && other.deterministic && canonicalized == other.canonicalized

  /**
   * Returns a `hashCode` for the calculation performed by this expression. Unlike the standard
   * `hashCode`, an attempt has been made to eliminate cosmetic differences.
   *
   * See [[Canonicalize]] for more details.
   */
  def semanticHash(): Int = canonicalized.hashCode()

  /**
   * Checks the input data types, returns `TypeCheckResult.success` if it's valid,
   * or returns a `TypeCheckResult` with an error message if invalid.
   * Note: it's not valid to call this method until `childrenResolved == true`.
   */
  def checkInputDataTypes(): TypeCheckResult = TypeCheckResult.TypeCheckSuccess

  /**
   * Returns a user-facing string representation of this expression's name.
   * This should usually match the name of the function in SQL.
   */
  def prettyName: String =
    getTagValue(FunctionRegistry.FUNC_ALIAS).getOrElse(nodeName.toLowerCase(Locale.ROOT))

  protected def flatArguments: Iterator[Any] = stringArgs.flatMap {
    case t: Iterable[_] => t
    case single => single :: Nil
  }

  // Marks this as final, Expression.verboseString should never be called, and thus shouldn't be
  // overridden by concrete classes.
  final override def verboseString(maxFields: Int): String = simpleString(maxFields)

  override def simpleString(maxFields: Int): String = toString

  override def toString: String = prettyName + truncatedString(
    flatArguments.toSeq, "(", ", ", ")", SQLConf.get.maxToStringFields)

  /**
   * Returns SQL representation of this expression.  For expressions extending [[NonSQLExpression]],
   * this method may return an arbitrary user facing string.
   */
  def sql: String = {
    val childrenSQL = children.map(_.sql).mkString(", ")
    s"$prettyName($childrenSQL)"
  }

  override def simpleStringWithNodeId(): String = {
    throw SparkException.internalError(s"$nodeName does not implement simpleStringWithNodeId")
  }

  protected def typeSuffix =
    if (resolved) {
      dataType match {
        case LongType => "L"
        case _ => ""
      }
    } else {
      ""
    }
}


/**
 * An expression that cannot be evaluated. These expressions don't live past analysis or
 * optimization time (e.g. Star) and should not be evaluated during query planning and
 * execution.
 */
trait Unevaluable extends Expression {

  /** Unevaluable is not foldable because we don't have an eval for it. */
  final override def foldable: Boolean = false

  final override def eval(input: InternalRow = null): Any =
    throw QueryExecutionErrors.cannotEvaluateExpressionError(this)

  final override protected def doGenCode(ctx: CodegenContext, ev: ExprCode): ExprCode =
    throw QueryExecutionErrors.cannotGenerateCodeForExpressionError(this)
}


/**
 * An expression that gets replaced at runtime (currently by the optimizer) into a different
 * expression for evaluation. This is mainly used to provide compatibility with other databases.
 * For example, we use this to support "nvl" by replacing it with "coalesce".
 */
trait RuntimeReplaceable extends Expression {
  def replacement: Expression

  override val nodePatterns: Seq[TreePattern] = Seq(RUNTIME_REPLACEABLE)
  override def nullable: Boolean = replacement.nullable
  override def dataType: DataType = replacement.dataType
  // As this expression gets replaced at optimization with its `child" expression,
  // two `RuntimeReplaceable` are considered to be semantically equal if their "child" expressions
  // are semantically equal.
  override lazy val canonicalized: Expression = replacement.canonicalized

  final override def eval(input: InternalRow = null): Any =
    throw QueryExecutionErrors.cannotEvaluateExpressionError(this)
  final override protected def doGenCode(ctx: CodegenContext, ev: ExprCode): ExprCode =
    throw QueryExecutionErrors.cannotGenerateCodeForExpressionError(this)
}

/**
 * An add-on of [[RuntimeReplaceable]]. It makes `replacement` the child of the expression, to
 * inherit the analysis rules for it, such as type coercion. The implementation should put
 * `replacement` in the case class constructor, and define a normal constructor that accepts only
 * the original parameters. For an example, see [[TryAdd]]. To make sure the explain plan and
 * expression SQL works correctly, the implementation should also implement the `parameters` method.
 */
trait InheritAnalysisRules extends UnaryLike[Expression] { self: RuntimeReplaceable =>
  override def child: Expression = replacement
  def parameters: Seq[Expression]
  override def flatArguments: Iterator[Any] = parameters.iterator
  // This method is used to generate a SQL string with transformed inputs. This is necessary as
  // the actual inputs are not the children of this expression.
  def makeSQLString(childrenSQL: Seq[String]): String = {
    prettyName + childrenSQL.mkString("(", ", ", ")")
  }
  final override def sql: String = makeSQLString(parameters.map(_.sql))
}

/**
 * An add-on of [[AggregateFunction]]. This gets rewritten (currently by the optimizer) into a
 * different aggregate expression for evaluation. This is mainly used to provide compatibility
 * with other databases. For example, we use this to support every, any/some aggregates by rewriting
 * them with Min and Max respectively.
 */
trait RuntimeReplaceableAggregate extends RuntimeReplaceable { self: AggregateFunction =>
  override def aggBufferSchema: StructType = {
    throw SparkException.internalError(
      "RuntimeReplaceableAggregate.aggBufferSchema should not be called")
  }
  override def aggBufferAttributes: Seq[AttributeReference] = {
    throw SparkException.internalError(
      "RuntimeReplaceableAggregate.aggBufferAttributes should not be called")
  }
  override def inputAggBufferAttributes: Seq[AttributeReference] = {
    throw SparkException.internalError(
      "RuntimeReplaceableAggregate.inputAggBufferAttributes should not be called")
  }
}

/**
 * Expressions that don't have SQL representation should extend this trait.  Examples are
 * `ScalaUDF`, `ScalaUDAF`, and object expressions like `MapObjects` and `Invoke`.
 */
trait NonSQLExpression extends Expression {
  final override def sql: String = {
    transform {
      case a: Attribute => new PrettyAttribute(a)
      case a: Alias => PrettyAttribute(a.sql, a.dataType)
      case p: PythonUDF => PrettyPythonUDF(p.name, p.dataType, p.children)
    }.toString
  }
}


/**
 * An expression that is nondeterministic.
 */
trait Nondeterministic extends Expression {
  final override lazy val deterministic: Boolean = false
  final override def foldable: Boolean = false

  @transient
  private[this] var initialized = false

  /**
   * Initializes internal states given the current partition index and mark this as initialized.
   * Subclasses should override [[initializeInternal()]].
   */
  final def initialize(partitionIndex: Int): Unit = {
    initializeInternal(partitionIndex)
    initialized = true
  }

  protected def initializeInternal(partitionIndex: Int): Unit

  /**
   * @inheritdoc
   * Throws an exception if [[initialize()]] is not called yet.
   * Subclasses should override [[evalInternal()]].
   */
  final override def eval(input: InternalRow = null): Any = {
    require(initialized,
      s"Nondeterministic expression ${this.getClass.getName} should be initialized before eval.")
    evalInternal(input)
  }

  protected def evalInternal(input: InternalRow): Any
}

/**
 * An expression that contains conditional expression branches, so not all branches will be hit.
 * All optimization should be careful with the evaluation order.
 */
trait ConditionalExpression extends Expression {
  final override def foldable: Boolean = children.forall(_.foldable)

  /**
   * Return the children expressions which can always be hit at runtime.
   */
  def alwaysEvaluatedInputs: Seq[Expression]

  /**
   * Return groups of branches. For each group, at least one branch will be hit at runtime,
   * so that we can eagerly evaluate the common expressions of a group.
   */
  def branchGroups: Seq[Seq[Expression]]
}

/**
 * An expression that contains mutable state. A stateful expression is always non-deterministic
 * because the results it produces during evaluation are not only dependent on the given input
 * but also on its internal state.
 *
 * The state of the expressions is generally not exposed in the parameter list and this makes
 * comparing stateful expressions problematic because similar stateful expressions (with the same
 * parameter list) but with different internal state will be considered equal. This is especially
 * problematic during tree transformations. In order to counter this the `fastEquals` method for
 * stateful expressions only returns `true` for the same reference.
 *
 * A stateful expression should never be evaluated multiple times for a single row. This should
 * only be a problem for interpreted execution. This can be prevented by creating fresh copies
 * of the stateful expression before execution, these can be made using the `freshCopy` function.
 */
trait Stateful extends Nondeterministic {
  /**
   * Return a fresh uninitialized copy of the stateful expression.
   */
  def freshCopy(): Stateful

  /**
   * Only the same reference is considered equal.
   */
  override def fastEquals(other: TreeNode[_]): Boolean = this eq other
}

/**
 * A leaf expression, i.e. one without any child expressions.
 */
abstract class LeafExpression extends Expression with LeafLike[Expression]


/**
 * An expression with one input and one output. The output is by default evaluated to null
 * if the input is evaluated to null.
 */
abstract class UnaryExpression extends Expression with UnaryLike[Expression] {

  override def foldable: Boolean = child.foldable
  override def nullable: Boolean = child.nullable

  /**
   * Default behavior of evaluation according to the default nullability of UnaryExpression.
   * If subclass of UnaryExpression override nullable, probably should also override this.
   */
  override def eval(input: InternalRow): Any = {
    val value = child.eval(input)
    if (value == null) {
      null
    } else {
      nullSafeEval(value)
    }
  }

  /**
   * Called by default [[eval]] implementation.  If subclass of UnaryExpression keep the default
   * nullability, they can override this method to save null-check code.  If we need full control
   * of evaluation process, we should override [[eval]].
   */
  protected def nullSafeEval(input: Any): Any =
    throw QueryExecutionErrors.notOverrideExpectedMethodsError("UnaryExpressions",
      "eval", "nullSafeEval")

  /**
   * Called by unary expressions to generate a code block that returns null if its parent returns
   * null, and if not null, use `f` to generate the expression.
   *
   * As an example, the following does a boolean inversion (i.e. NOT).
   * {{{
   *   defineCodeGen(ctx, ev, c => s"!($c)")
   * }}}
   *
   * @param f function that accepts a variable name and returns Java code to compute the output.
   */
  protected def defineCodeGen(
      ctx: CodegenContext,
      ev: ExprCode,
      f: String => String): ExprCode = {
    nullSafeCodeGen(ctx, ev, eval => {
      s"${ev.value} = ${f(eval)};"
    })
  }

  /**
   * Called by unary expressions to generate a code block that returns null if its parent returns
   * null, and if not null, use `f` to generate the expression.
   *
   * @param f function that accepts the non-null evaluation result name of child and returns Java
   *          code to compute the output.
   */
  protected def nullSafeCodeGen(
      ctx: CodegenContext,
      ev: ExprCode,
      f: String => String): ExprCode = {
    val childGen = child.genCode(ctx)
    val resultCode = f(childGen.value)

    if (nullable) {
      val nullSafeEval = ctx.nullSafeExec(child.nullable, childGen.isNull)(resultCode)
      ev.copy(code = code"""
        ${childGen.code}
        boolean ${ev.isNull} = ${childGen.isNull};
        ${CodeGenerator.javaType(dataType)} ${ev.value} = ${CodeGenerator.defaultValue(dataType)};
        $nullSafeEval
      """)
    } else {
      ev.copy(code = code"""
        ${childGen.code}
        ${CodeGenerator.javaType(dataType)} ${ev.value} = ${CodeGenerator.defaultValue(dataType)};
        $resultCode""", isNull = FalseLiteral)
    }
  }
}

/**
 * An expression with SQL query context. The context string can be serialized from the Driver
 * to executors. It will also be kept after rule transforms.
 */
trait SupportQueryContext extends Expression with Serializable {
  protected var queryContext: Option[SQLQueryContext] = initQueryContext()

  def initQueryContext(): Option[SQLQueryContext]

  def getContextOrNull(): SQLQueryContext = queryContext.getOrElse(null)

  def getContextOrNullCode(ctx: CodegenContext, withErrorContext: Boolean = true): String = {
    if (withErrorContext && queryContext.isDefined) {
      ctx.addReferenceObj("errCtx", queryContext.get)
    } else {
      "null"
    }
  }

  // Note: Even though query contexts are serialized to executors, it will be regenerated from an
  //       empty "Origin" during rule transforms since "Origin"s are not serialized to executors
  //       for better performance. Thus, we need to copy the original query context during
  //       transforms. The query context string is considered as a "tag" on the expression here.
  override def copyTagsFrom(other: Expression): Unit = {
    other match {
      case s: SupportQueryContext =>
        queryContext = s.queryContext
      case _ =>
    }
    super.copyTagsFrom(other)
  }
}

object UnaryExpression {
  def unapply(e: UnaryExpression): Option[Expression] = Some(e.child)
}


/**
 * An expression with two inputs and one output. The output is by default evaluated to null
 * if any input is evaluated to null.
 */
abstract class BinaryExpression extends Expression with BinaryLike[Expression] {

  override def foldable: Boolean = left.foldable && right.foldable

  override def nullable: Boolean = left.nullable || right.nullable

  /**
   * Default behavior of evaluation according to the default nullability of BinaryExpression.
   * If subclass of BinaryExpression override nullable, probably should also override this.
   */
  override def eval(input: InternalRow): Any = {
    val value1 = left.eval(input)
    if (value1 == null) {
      null
    } else {
      val value2 = right.eval(input)
      if (value2 == null) {
        null
      } else {
        nullSafeEval(value1, value2)
      }
    }
  }

  /**
   * Called by default [[eval]] implementation.  If subclass of BinaryExpression keep the default
   * nullability, they can override this method to save null-check code.  If we need full control
   * of evaluation process, we should override [[eval]].
   */
  protected def nullSafeEval(input1: Any, input2: Any): Any =
    throw QueryExecutionErrors.notOverrideExpectedMethodsError("BinaryExpressions",
      "eval", "nullSafeEval")

  /**
   * Short hand for generating binary evaluation code.
   * If either of the sub-expressions is null, the result of this computation
   * is assumed to be null.
   *
   * @param f accepts two variable names and returns Java code to compute the output.
   */
  protected def defineCodeGen(
      ctx: CodegenContext,
      ev: ExprCode,
      f: (String, String) => String): ExprCode = {
    nullSafeCodeGen(ctx, ev, (eval1, eval2) => {
      s"${ev.value} = ${f(eval1, eval2)};"
    })
  }

  /**
   * Short hand for generating binary evaluation code.
   * If either of the sub-expressions is null, the result of this computation
   * is assumed to be null.
   *
   * @param f function that accepts the 2 non-null evaluation result names of children
   *          and returns Java code to compute the output.
   */
  protected def nullSafeCodeGen(
      ctx: CodegenContext,
      ev: ExprCode,
      f: (String, String) => String): ExprCode = {
    val leftGen = left.genCode(ctx)
    val rightGen = right.genCode(ctx)
    val resultCode = f(leftGen.value, rightGen.value)

    if (nullable) {
      val nullSafeEval =
        leftGen.code + ctx.nullSafeExec(left.nullable, leftGen.isNull) {
          rightGen.code + ctx.nullSafeExec(right.nullable, rightGen.isNull) {
            s"""
              ${ev.isNull} = false; // resultCode could change nullability.
              $resultCode
            """
          }
      }

      ev.copy(code = code"""
        boolean ${ev.isNull} = true;
        ${CodeGenerator.javaType(dataType)} ${ev.value} = ${CodeGenerator.defaultValue(dataType)};
        $nullSafeEval
      """)
    } else {
      ev.copy(code = code"""
        ${leftGen.code}
        ${rightGen.code}
        ${CodeGenerator.javaType(dataType)} ${ev.value} = ${CodeGenerator.defaultValue(dataType)};
        $resultCode""", isNull = FalseLiteral)
    }
  }
}


object BinaryExpression {
  def unapply(e: BinaryExpression): Option[(Expression, Expression)] = Some((e.left, e.right))
}


/**
 * A [[BinaryExpression]] that is an operator, with two properties:
 *
 * 1. The string representation is "x symbol y", rather than "funcName(x, y)".
 * 2. Two inputs are expected to be of the same type. If the two inputs have different types,
 *    the analyzer will find the tightest common type and do the proper type casting.
 */
abstract class BinaryOperator extends BinaryExpression with ExpectsInputTypes with QueryErrorsBase {

  /**
   * Expected input type from both left/right child expressions, similar to the
   * [[ImplicitCastInputTypes]] trait.
   */
  def inputType: AbstractDataType

  def symbol: String

  def sqlOperator: String = symbol

  override def toString: String = s"($left $sqlOperator $right)"

  override def inputTypes: Seq[AbstractDataType] = Seq(inputType, inputType)

  override def checkInputDataTypes(): TypeCheckResult = {
    // First check whether left and right have the same type, then check if the type is acceptable.
    if (!left.dataType.sameType(right.dataType)) {
      DataTypeMismatch(
        errorSubClass = "BINARY_OP_DIFF_TYPES",
        messageParameters = Map(
          "left" -> toSQLType(left.dataType),
          "right" -> toSQLType(right.dataType)))
    } else if (!inputType.acceptsType(left.dataType)) {
      DataTypeMismatch(
        errorSubClass = "BINARY_OP_WRONG_TYPE",
        messageParameters = Map(
          "inputType" -> toSQLType(inputType),
          "actualDataType" -> toSQLType(left.dataType)))
    } else {
      TypeCheckResult.TypeCheckSuccess
    }
  }

  override def sql: String = s"(${left.sql} $sqlOperator ${right.sql})"
}


object BinaryOperator {
  def unapply(e: BinaryOperator): Option[(Expression, Expression)] = Some((e.left, e.right))
}

/**
 * An expression with three inputs and one output. The output is by default evaluated to null
 * if any input is evaluated to null.
 */
abstract class TernaryExpression extends Expression with TernaryLike[Expression] {

  override def foldable: Boolean = children.forall(_.foldable)

  override def nullable: Boolean = children.exists(_.nullable)

  /**
   * Default behavior of evaluation according to the default nullability of TernaryExpression.
   * If subclass of TernaryExpression override nullable, probably should also override this.
   */
  override def eval(input: InternalRow): Any = {
    val value1 = first.eval(input)
    if (value1 != null) {
      val value2 = second.eval(input)
      if (value2 != null) {
        val value3 = third.eval(input)
        if (value3 != null) {
          return nullSafeEval(value1, value2, value3)
        }
      }
    }
    null
  }

  /**
   * Called by default [[eval]] implementation.  If subclass of TernaryExpression keep the default
   * nullability, they can override this method to save null-check code.  If we need full control
   * of evaluation process, we should override [[eval]].
   */
  protected def nullSafeEval(input1: Any, input2: Any, input3: Any): Any =
    throw QueryExecutionErrors.notOverrideExpectedMethodsError("TernaryExpressions",
      "eval", "nullSafeEval")

  /**
   * Short hand for generating ternary evaluation code.
   * If either of the sub-expressions is null, the result of this computation
   * is assumed to be null.
   *
   * @param f accepts three variable names and returns Java code to compute the output.
   */
  protected def defineCodeGen(
    ctx: CodegenContext,
    ev: ExprCode,
    f: (String, String, String) => String): ExprCode = {
    nullSafeCodeGen(ctx, ev, (eval1, eval2, eval3) => {
      s"${ev.value} = ${f(eval1, eval2, eval3)};"
    })
  }

  /**
   * Short hand for generating ternary evaluation code.
   * If either of the sub-expressions is null, the result of this computation
   * is assumed to be null.
   *
   * @param f function that accepts the 3 non-null evaluation result names of children
   *          and returns Java code to compute the output.
   */
  protected def nullSafeCodeGen(
    ctx: CodegenContext,
    ev: ExprCode,
    f: (String, String, String) => String): ExprCode = {
    val leftGen = children(0).genCode(ctx)
    val midGen = children(1).genCode(ctx)
    val rightGen = children(2).genCode(ctx)
    val resultCode = f(leftGen.value, midGen.value, rightGen.value)

    if (nullable) {
      val nullSafeEval =
        leftGen.code + ctx.nullSafeExec(children(0).nullable, leftGen.isNull) {
          midGen.code + ctx.nullSafeExec(children(1).nullable, midGen.isNull) {
            rightGen.code + ctx.nullSafeExec(children(2).nullable, rightGen.isNull) {
              s"""
                ${ev.isNull} = false; // resultCode could change nullability.
                $resultCode
              """
            }
          }
      }

      ev.copy(code = code"""
        boolean ${ev.isNull} = true;
        ${CodeGenerator.javaType(dataType)} ${ev.value} = ${CodeGenerator.defaultValue(dataType)};
        $nullSafeEval""")
    } else {
      ev.copy(code = code"""
        ${leftGen.code}
        ${midGen.code}
        ${rightGen.code}
        ${CodeGenerator.javaType(dataType)} ${ev.value} = ${CodeGenerator.defaultValue(dataType)};
        $resultCode""", isNull = FalseLiteral)
    }
  }
}

/**
 * An expression with four inputs and one output. The output is by default evaluated to null
 * if any input is evaluated to null.
 */
abstract class QuaternaryExpression extends Expression with QuaternaryLike[Expression] {

  override def foldable: Boolean = children.forall(_.foldable)

  override def nullable: Boolean = children.exists(_.nullable)

  /**
   * Default behavior of evaluation according to the default nullability of QuaternaryExpression.
   * If subclass of QuaternaryExpression override nullable, probably should also override this.
   */
  override def eval(input: InternalRow): Any = {
    val value1 = first.eval(input)
    if (value1 != null) {
      val value2 = second.eval(input)
      if (value2 != null) {
        val value3 = third.eval(input)
        if (value3 != null) {
          val value4 = fourth.eval(input)
          if (value4 != null) {
            return nullSafeEval(value1, value2, value3, value4)
          }
        }
      }
    }
    null
  }

  /**
   * Called by default [[eval]] implementation.  If subclass of QuaternaryExpression keep the
   *  default nullability, they can override this method to save null-check code.  If we need
   *  full control of evaluation process, we should override [[eval]].
   */
  protected def nullSafeEval(input1: Any, input2: Any, input3: Any, input4: Any): Any =
    throw QueryExecutionErrors.notOverrideExpectedMethodsError("QuaternaryExpressions",
      "eval", "nullSafeEval")

  /**
   * Short hand for generating quaternary evaluation code.
   * If either of the sub-expressions is null, the result of this computation
   * is assumed to be null.
   *
   * @param f accepts four variable names and returns Java code to compute the output.
   */
  protected def defineCodeGen(
    ctx: CodegenContext,
    ev: ExprCode,
    f: (String, String, String, String) => String): ExprCode = {
    nullSafeCodeGen(ctx, ev, (eval1, eval2, eval3, eval4) => {
      s"${ev.value} = ${f(eval1, eval2, eval3, eval4)};"
    })
  }

  /**
   * Short hand for generating quaternary evaluation code.
   * If either of the sub-expressions is null, the result of this computation
   * is assumed to be null.
   *
   * @param f function that accepts the 4 non-null evaluation result names of children
   *          and returns Java code to compute the output.
   */
  protected def nullSafeCodeGen(
    ctx: CodegenContext,
    ev: ExprCode,
    f: (String, String, String, String) => String): ExprCode = {
    val firstGen = children(0).genCode(ctx)
    val secondGen = children(1).genCode(ctx)
    val thridGen = children(2).genCode(ctx)
    val fourthGen = children(3).genCode(ctx)
    val resultCode = f(firstGen.value, secondGen.value, thridGen.value, fourthGen.value)

    if (nullable) {
      val nullSafeEval =
        firstGen.code + ctx.nullSafeExec(children(0).nullable, firstGen.isNull) {
          secondGen.code + ctx.nullSafeExec(children(1).nullable, secondGen.isNull) {
            thridGen.code + ctx.nullSafeExec(children(2).nullable, thridGen.isNull) {
              fourthGen.code + ctx.nullSafeExec(children(3).nullable, fourthGen.isNull) {
                s"""
                  ${ev.isNull} = false; // resultCode could change nullability.
                  $resultCode
                """
              }
            }
          }
      }

      ev.copy(code = code"""
        boolean ${ev.isNull} = true;
        ${CodeGenerator.javaType(dataType)} ${ev.value} = ${CodeGenerator.defaultValue(dataType)};
        $nullSafeEval""")
    } else {
      ev.copy(code = code"""
        ${firstGen.code}
        ${secondGen.code}
        ${thridGen.code}
        ${fourthGen.code}
        ${CodeGenerator.javaType(dataType)} ${ev.value} = ${CodeGenerator.defaultValue(dataType)};
        $resultCode""", isNull = FalseLiteral)
    }
  }
}

/**
 * An expression with six inputs + 7th optional input and one output.
 * The output is by default evaluated to null if any input is evaluated to null.
 */
abstract class SeptenaryExpression extends Expression {

  override def foldable: Boolean = children.forall(_.foldable)

  override def nullable: Boolean = children.exists(_.nullable)

  /**
   * Default behavior of evaluation according to the default nullability of SeptenaryExpression.
   * If subclass of SeptenaryExpression override nullable, probably should also override this.
   */
  override def eval(input: InternalRow): Any = {
    val exprs = children
    val v1 = exprs(0).eval(input)
    if (v1 != null) {
      val v2 = exprs(1).eval(input)
      if (v2 != null) {
        val v3 = exprs(2).eval(input)
        if (v3 != null) {
          val v4 = exprs(3).eval(input)
          if (v4 != null) {
            val v5 = exprs(4).eval(input)
            if (v5 != null) {
              val v6 = exprs(5).eval(input)
              if (v6 != null) {
                if (exprs.length > 6) {
                  val v7 = exprs(6).eval(input)
                  if (v7 != null) {
                    return nullSafeEval(v1, v2, v3, v4, v5, v6, Some(v7))
                  }
                } else {
                  return nullSafeEval(v1, v2, v3, v4, v5, v6, None)
                }
              }
            }
          }
        }
      }
    }
    null
  }

  /**
   * Called by default [[eval]] implementation.  If subclass of SeptenaryExpression keep the
   * default nullability, they can override this method to save null-check code.  If we need
   * full control of evaluation process, we should override [[eval]].
   */
  protected def nullSafeEval(
      input1: Any,
      input2: Any,
      input3: Any,
      input4: Any,
      input5: Any,
      input6: Any,
      input7: Option[Any]): Any = {
    throw QueryExecutionErrors.notOverrideExpectedMethodsError("SeptenaryExpression",
      "eval", "nullSafeEval")
  }

  /**
   * Short hand for generating septenary evaluation code.
   * If either of the sub-expressions is null, the result of this computation
   * is assumed to be null.
   *
   * @param f accepts seven variable names and returns Java code to compute the output.
   */
  protected def defineCodeGen(
      ctx: CodegenContext,
      ev: ExprCode,
      f: (String, String, String, String, String, String, Option[String]) => String
    ): ExprCode = {
    nullSafeCodeGen(ctx, ev, (eval1, eval2, eval3, eval4, eval5, eval6, eval7) => {
      s"${ev.value} = ${f(eval1, eval2, eval3, eval4, eval5, eval6, eval7)};"
    })
  }

  /**
   * Short hand for generating septenary evaluation code.
   * If either of the sub-expressions is null, the result of this computation
   * is assumed to be null.
   *
   * @param f function that accepts the 7 non-null evaluation result names of children
   *          and returns Java code to compute the output.
   */
  protected def nullSafeCodeGen(
      ctx: CodegenContext,
      ev: ExprCode,
      f: (String, String, String, String, String, String, Option[String]) => String
    ): ExprCode = {
    val firstGen = children(0).genCode(ctx)
    val secondGen = children(1).genCode(ctx)
    val thirdGen = children(2).genCode(ctx)
    val fourthGen = children(3).genCode(ctx)
    val fifthGen = children(4).genCode(ctx)
    val sixthGen = children(5).genCode(ctx)
    val seventhGen = if (children.length > 6) Some(children(6).genCode(ctx)) else None
    val resultCode = f(
      firstGen.value,
      secondGen.value,
      thirdGen.value,
      fourthGen.value,
      fifthGen.value,
      sixthGen.value,
      seventhGen.map(_.value))

    if (nullable) {
      val nullSafeEval =
        firstGen.code + ctx.nullSafeExec(children(0).nullable, firstGen.isNull) {
          secondGen.code + ctx.nullSafeExec(children(1).nullable, secondGen.isNull) {
            thirdGen.code + ctx.nullSafeExec(children(2).nullable, thirdGen.isNull) {
              fourthGen.code + ctx.nullSafeExec(children(3).nullable, fourthGen.isNull) {
                fifthGen.code + ctx.nullSafeExec(children(4).nullable, fifthGen.isNull) {
                  sixthGen.code + ctx.nullSafeExec(children(5).nullable, sixthGen.isNull) {
                    val nullSafeResultCode =
                      s"""
                      ${ev.isNull} = false; // resultCode could change nullability.
                      $resultCode
                      """
                    seventhGen.map { gen =>
                      gen.code + ctx.nullSafeExec(children(6).nullable, gen.isNull) {
                        nullSafeResultCode
                      }
                    }.getOrElse(nullSafeResultCode)
                  }
                }
              }
            }
          }
        }

      ev.copy(code = code"""
        boolean ${ev.isNull} = true;
        ${CodeGenerator.javaType(dataType)} ${ev.value} = ${CodeGenerator.defaultValue(dataType)};
        $nullSafeEval""")
    } else {
      ev.copy(code = code"""
        ${firstGen.code}
        ${secondGen.code}
        ${thirdGen.code}
        ${fourthGen.code}
        ${fifthGen.code}
        ${sixthGen.code}
        ${seventhGen.map(_.code).getOrElse("")}
        ${CodeGenerator.javaType(dataType)} ${ev.value} = ${CodeGenerator.defaultValue(dataType)};
        $resultCode""", isNull = FalseLiteral)
    }
  }
}

/**
 * A trait used for resolving nullable flags, including `nullable`, `containsNull` of [[ArrayType]]
 * and `valueContainsNull` of [[MapType]], containsNull, valueContainsNull flags of the output date
 * type. This is usually utilized by the expressions (e.g. [[CaseWhen]]) that combine data from
 * multiple child expressions of non-primitive types.
 */
trait ComplexTypeMergingExpression extends Expression {

  /**
   * A collection of data types used for resolution the output type of the expression. By default,
   * data types of all child expressions. The collection must not be empty.
   */
  @transient
  lazy val inputTypesForMerging: Seq[DataType] = children.map(_.dataType)

  def dataTypeCheck: Unit = {
    require(
      inputTypesForMerging.nonEmpty,
      "The collection of input data types must not be empty.")
    require(
      TypeCoercion.haveSameType(inputTypesForMerging),
      "All input types must be the same except nullable, containsNull, valueContainsNull flags." +
        s" The input types found are\n\t${inputTypesForMerging.mkString("\n\t")}")
  }

  private lazy val internalDataType: DataType = {
    dataTypeCheck
    inputTypesForMerging.reduceLeft(TypeCoercion.findCommonTypeDifferentOnlyInNullFlags(_, _).get)
  }

  override def dataType: DataType = internalDataType
}

/**
 * Common base trait for user-defined functions, including UDF/UDAF/UDTF of different languages
 * and Hive function wrappers.
 */
trait UserDefinedExpression {
  def name: String
}

trait CommutativeExpression extends Expression {
  /** Collects adjacent commutative operations. */
  private def gatherCommutative(
      e: Expression,
      f: PartialFunction[CommutativeExpression, Seq[Expression]]): Seq[Expression] = e match {
    case c: CommutativeExpression if f.isDefinedAt(c) => f(c).flatMap(gatherCommutative(_, f))
    case other => other.canonicalized :: Nil
  }

  /**
   * Reorders adjacent commutative operators such as [[And]] in the expression tree, according to
   * the `hashCode` of non-commutative nodes, to remove cosmetic variations.
   */
  protected def orderCommutative(
      f: PartialFunction[CommutativeExpression, Seq[Expression]]): Seq[Expression] =
    gatherCommutative(this, f).sortBy(_.hashCode())
}

相关信息

spark 源码目录

相关文章

spark AliasHelper 源码

spark ApplyFunctionExpression 源码

spark AttributeSet 源码

spark BloomFilterMightContain 源码

spark BoundAttribute 源码

spark CallMethodViaReflection 源码

spark Cast 源码

spark CodeGeneratorWithInterpretedFallback 源码

spark DynamicPruning 源码

spark EquivalentExpressions 源码

0  赞