spark ExpectsInputTypes 源码

  • 2022-10-20
  • 浏览 (224)

spark ExpectsInputTypes 代码

文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/ExpectsInputTypes.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.catalyst.expressions

import org.apache.spark.sql.catalyst.analysis.TypeCheckResult
import org.apache.spark.sql.catalyst.analysis.TypeCheckResult.DataTypeMismatch
import org.apache.spark.sql.errors.QueryErrorsBase
import org.apache.spark.sql.types.AbstractDataType

/**
 * A trait that gets mixin to define the expected input types of an expression.
 *
 * This trait is typically used by operator expressions (e.g. [[Add]], [[Subtract]]) to define
 * expected input types without any implicit casting.
 *
 * Most function expressions (e.g. [[Substring]] should extend [[ImplicitCastInputTypes]]) instead.
 */
trait ExpectsInputTypes extends Expression {

  /**
   * Expected input types from child expressions. The i-th position in the returned seq indicates
   * the type requirement for the i-th child.
   *
   * The possible values at each position are:
   * 1. a specific data type, e.g. LongType, StringType.
   * 2. a non-leaf abstract data type, e.g. NumericType, IntegralType, FractionalType.
   */
  def inputTypes: Seq[AbstractDataType]

  override def checkInputDataTypes(): TypeCheckResult = {
    ExpectsInputTypes.checkInputDataTypes(children, inputTypes)
  }
}

object ExpectsInputTypes extends QueryErrorsBase {

  def checkInputDataTypes(
      inputs: Seq[Expression],
      inputTypes: Seq[AbstractDataType]): TypeCheckResult = {
    val mismatch = inputs.zip(inputTypes).zipWithIndex.collectFirst {
      case ((input, expected), idx) if !expected.acceptsType(input.dataType) =>
        DataTypeMismatch(
          errorSubClass = "UNEXPECTED_INPUT_TYPE",
          messageParameters = Map(
            "paramIndex" -> (idx + 1).toString,
            "requiredType" -> toSQLType(expected),
            "inputSql" -> toSQLExpr(input),
            "inputType" -> toSQLType(input.dataType)))
    }

    mismatch.getOrElse(TypeCheckResult.TypeCheckSuccess)
  }
}

/**
 * A mixin for the analyzer to perform implicit type casting using
 * [[org.apache.spark.sql.catalyst.analysis.TypeCoercion.ImplicitTypeCasts]].
 */
trait ImplicitCastInputTypes extends ExpectsInputTypes {
  // No other methods
}

相关信息

spark 源码目录

相关文章

spark AliasHelper 源码

spark ApplyFunctionExpression 源码

spark AttributeSet 源码

spark BloomFilterMightContain 源码

spark BoundAttribute 源码

spark CallMethodViaReflection 源码

spark Cast 源码

spark CodeGeneratorWithInterpretedFallback 源码

spark DynamicPruning 源码

spark EquivalentExpressions 源码

0  赞