spark RemoveRedundantAggregates 源码

  • 2022-10-20
  • 浏览 (255)

spark RemoveRedundantAggregates 代码

文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/RemoveRedundantAggregates.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.catalyst.optimizer

import org.apache.spark.sql.catalyst.analysis.PullOutNondeterministic
import org.apache.spark.sql.catalyst.expressions.{AliasHelper, AttributeSet, ExpressionSet}
import org.apache.spark.sql.catalyst.expressions.aggregate.AggregateExpression
import org.apache.spark.sql.catalyst.plans.logical.{Aggregate, LogicalPlan, Project}
import org.apache.spark.sql.catalyst.rules.Rule
import org.apache.spark.sql.catalyst.trees.TreePattern.AGGREGATE

/**
 * Remove redundant aggregates from a query plan. A redundant aggregate is an aggregate whose
 * only goal is to keep distinct values, while its parent aggregate would ignore duplicate values.
 */
object RemoveRedundantAggregates extends Rule[LogicalPlan] with AliasHelper {
  def apply(plan: LogicalPlan): LogicalPlan = plan.transformUpWithPruning(
    _.containsPattern(AGGREGATE), ruleId) {
    case upper @ Aggregate(_, _, lower: Aggregate) if isLowerRedundant(upper, lower) =>
      val aliasMap = getAliasMap(lower)

      val newAggregate = upper.copy(
        child = lower.child,
        groupingExpressions = upper.groupingExpressions.map(replaceAlias(_, aliasMap)),
        aggregateExpressions = upper.aggregateExpressions.map(
          replaceAliasButKeepName(_, aliasMap))
      )

      // We might have introduces non-deterministic grouping expression
      if (newAggregate.groupingExpressions.exists(!_.deterministic)) {
        PullOutNondeterministic.applyLocally.applyOrElse(newAggregate, identity[LogicalPlan])
      } else {
        newAggregate
      }

    case agg @ Aggregate(groupingExps, _, child)
        if agg.groupOnly && child.distinctKeys.exists(_.subsetOf(ExpressionSet(groupingExps))) =>
      Project(agg.aggregateExpressions, child)
  }

  private def isLowerRedundant(upper: Aggregate, lower: Aggregate): Boolean = {
    val upperHasNoDuplicateSensitiveAgg = upper
      .aggregateExpressions
      .forall(expr => !expr.exists {
        case ae: AggregateExpression => isDuplicateSensitive(ae)
        case e => AggregateExpression.isAggregate(e)
      })

    lazy val upperRefsOnlyDeterministicNonAgg = upper.references.subsetOf(AttributeSet(
      lower
        .aggregateExpressions
        .filter(_.deterministic)
        .filterNot(AggregateExpression.containsAggregate)
        .map(_.toAttribute)
    ))

    upperHasNoDuplicateSensitiveAgg && upperRefsOnlyDeterministicNonAgg
  }

  private def isDuplicateSensitive(ae: AggregateExpression): Boolean = {
    !ae.isDistinct && !EliminateDistinct.isDuplicateAgnostic(ae.aggregateFunction)
  }
}

相关信息

spark 源码目录

相关文章

spark ComplexTypes 源码

spark CostBasedJoinReorder 源码

spark DecorrelateInnerQuery 源码

spark EliminateResolvedHint 源码

spark InjectRuntimeFilter 源码

spark InlineCTE 源码

spark LimitPushDownThroughWindow 源码

spark MergeScalarSubqueries 源码

spark NestedColumnAliasing 源码

spark NormalizeFloatingNumbers 源码

0  赞