spark PCA 源码

  • 2022-10-20
  • 浏览 (250)

spark PCA 代码

文件路径:/mllib/src/main/scala/org/apache/spark/ml/feature/PCA.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.ml.feature

import org.apache.hadoop.fs.Path

import org.apache.spark.annotation.Since
import org.apache.spark.ml._
import org.apache.spark.ml.linalg._
import org.apache.spark.ml.param._
import org.apache.spark.ml.param.shared._
import org.apache.spark.ml.util._
import org.apache.spark.mllib.feature
import org.apache.spark.mllib.linalg.{DenseMatrix => OldDenseMatrix, Vectors => OldVectors}
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.StructType
import org.apache.spark.util.VersionUtils.majorVersion

/**
 * Params for [[PCA]] and [[PCAModel]].
 */
private[feature] trait PCAParams extends Params with HasInputCol with HasOutputCol {

  /**
   * The number of principal components.
   * @group param
   */
  final val k: IntParam = new IntParam(this, "k", "the number of principal components (> 0)",
    ParamValidators.gt(0))

  /** @group getParam */
  def getK: Int = $(k)

  /** Validates and transforms the input schema. */
  protected def validateAndTransformSchema(schema: StructType): StructType = {
    SchemaUtils.checkColumnType(schema, $(inputCol), new VectorUDT)
    require(!schema.fieldNames.contains($(outputCol)),
      s"Output column ${$(outputCol)} already exists.")
    SchemaUtils.updateAttributeGroupSize(schema, $(outputCol), $(k))
  }
}

/**
 * PCA trains a model to project vectors to a lower dimensional space of the top `PCA!.k`
 * principal components.
 */
@Since("1.5.0")
class PCA @Since("1.5.0") (
    @Since("1.5.0") override val uid: String)
  extends Estimator[PCAModel] with PCAParams with DefaultParamsWritable {

  @Since("1.5.0")
  def this() = this(Identifiable.randomUID("pca"))

  /** @group setParam */
  @Since("1.5.0")
  def setInputCol(value: String): this.type = set(inputCol, value)

  /** @group setParam */
  @Since("1.5.0")
  def setOutputCol(value: String): this.type = set(outputCol, value)

  /** @group setParam */
  @Since("1.5.0")
  def setK(value: Int): this.type = set(k, value)

  /**
   * Computes a [[PCAModel]] that contains the principal components of the input vectors.
   */
  @Since("2.0.0")
  override def fit(dataset: Dataset[_]): PCAModel = {
    transformSchema(dataset.schema, logging = true)
    val input = dataset.select($(inputCol)).rdd.map {
      case Row(v: Vector) => OldVectors.fromML(v)
    }
    val pca = new feature.PCA(k = $(k))
    val pcaModel = pca.fit(input)
    copyValues(new PCAModel(uid, pcaModel.pc.asML, pcaModel.explainedVariance.asML)
      .setParent(this))
  }

  @Since("1.5.0")
  override def transformSchema(schema: StructType): StructType = {
    validateAndTransformSchema(schema)
  }

  @Since("1.5.0")
  override def copy(extra: ParamMap): PCA = defaultCopy(extra)
}

@Since("1.6.0")
object PCA extends DefaultParamsReadable[PCA] {

  @Since("1.6.0")
  override def load(path: String): PCA = super.load(path)
}

/**
 * Model fitted by [[PCA]]. Transforms vectors to a lower dimensional space.
 *
 * @param pc A principal components Matrix. Each column is one principal component.
 * @param explainedVariance A vector of proportions of variance explained by
 *                          each principal component.
 */
@Since("1.5.0")
class PCAModel private[ml] (
    @Since("1.5.0") override val uid: String,
    @Since("2.0.0") val pc: DenseMatrix,
    @Since("2.0.0") val explainedVariance: DenseVector)
  extends Model[PCAModel] with PCAParams with MLWritable {

  import PCAModel._

  /** @group setParam */
  @Since("1.5.0")
  def setInputCol(value: String): this.type = set(inputCol, value)

  /** @group setParam */
  @Since("1.5.0")
  def setOutputCol(value: String): this.type = set(outputCol, value)

  /**
   * Transform a vector by computed Principal Components.
   *
   * @note Vectors to be transformed must be the same length as the source vectors given
   * to `PCA.fit()`.
   */
  @Since("2.0.0")
  override def transform(dataset: Dataset[_]): DataFrame = {
    val outputSchema = transformSchema(dataset.schema, logging = true)

    val transposed = pc.transpose
    val transformer = udf { vector: Vector => transposed.multiply(vector) }
    dataset.withColumn($(outputCol), transformer(col($(inputCol))),
      outputSchema($(outputCol)).metadata)
  }

  @Since("1.5.0")
  override def transformSchema(schema: StructType): StructType = {
    var outputSchema = validateAndTransformSchema(schema)
    if ($(outputCol).nonEmpty) {
      outputSchema = SchemaUtils.updateAttributeGroupSize(outputSchema,
        $(outputCol), $(k))
    }
    outputSchema
  }

  @Since("1.5.0")
  override def copy(extra: ParamMap): PCAModel = {
    val copied = new PCAModel(uid, pc, explainedVariance)
    copyValues(copied, extra).setParent(parent)
  }

  @Since("1.6.0")
  override def write: MLWriter = new PCAModelWriter(this)

  @Since("3.0.0")
  override def toString: String = {
    s"PCAModel: uid=$uid, k=${$(k)}"
  }
}

@Since("1.6.0")
object PCAModel extends MLReadable[PCAModel] {

  private[PCAModel] class PCAModelWriter(instance: PCAModel) extends MLWriter {

    private case class Data(pc: DenseMatrix, explainedVariance: DenseVector)

    override protected def saveImpl(path: String): Unit = {
      DefaultParamsWriter.saveMetadata(instance, path, sc)
      val data = Data(instance.pc, instance.explainedVariance)
      val dataPath = new Path(path, "data").toString
      sparkSession.createDataFrame(Seq(data)).repartition(1).write.parquet(dataPath)
    }
  }

  private class PCAModelReader extends MLReader[PCAModel] {

    private val className = classOf[PCAModel].getName

    /**
     * Loads a [[PCAModel]] from data located at the input path. Note that the model includes an
     * `explainedVariance` member that is not recorded by Spark 1.6 and earlier. A model
     * can be loaded from such older data but will have an empty vector for
     * `explainedVariance`.
     *
     * @param path path to serialized model data
     * @return a [[PCAModel]]
     */
    override def load(path: String): PCAModel = {
      val metadata = DefaultParamsReader.loadMetadata(path, sc, className)

      val dataPath = new Path(path, "data").toString
      val model = if (majorVersion(metadata.sparkVersion) >= 2) {
        val Row(pc: DenseMatrix, explainedVariance: DenseVector) =
          sparkSession.read.parquet(dataPath)
            .select("pc", "explainedVariance")
            .head()
        new PCAModel(metadata.uid, pc, explainedVariance)
      } else {
        // pc field is the old matrix format in Spark <= 1.6
        // explainedVariance field is not present in Spark <= 1.6
        val Row(pc: OldDenseMatrix) = sparkSession.read.parquet(dataPath).select("pc").head()
        new PCAModel(metadata.uid, pc.asML, new DenseVector(Array.emptyDoubleArray))
      }
      metadata.getAndSetParams(model)
      model
    }
  }

  @Since("1.6.0")
  override def read: MLReader[PCAModel] = new PCAModelReader

  @Since("1.6.0")
  override def load(path: String): PCAModel = super.load(path)
}

相关信息

spark 源码目录

相关文章

spark Binarizer 源码

spark BucketedRandomProjectionLSH 源码

spark Bucketizer 源码

spark ChiSqSelector 源码

spark CountVectorizer 源码

spark DCT 源码

spark ElementwiseProduct 源码

spark FeatureHasher 源码

spark HashingTF 源码

spark IDF 源码

0  赞