spark UpdateFields 源码
spark UpdateFields 代码
文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/UpdateFields.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.catalyst.optimizer
import java.util.Locale
import scala.collection.mutable
import org.apache.spark.sql.catalyst.expressions.{Expression, UpdateFields, WithField}
import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan
import org.apache.spark.sql.catalyst.rules.Rule
import org.apache.spark.sql.catalyst.trees.TreePattern.UPDATE_FIELDS
/**
* Optimizes [[UpdateFields]] expression chains.
*/
object OptimizeUpdateFields extends Rule[LogicalPlan] {
private def canOptimize(names: Seq[String]): Boolean = {
if (conf.caseSensitiveAnalysis) {
names.distinct.length != names.length
} else {
names.map(_.toLowerCase(Locale.ROOT)).distinct.length != names.length
}
}
val optimizeUpdateFields: PartialFunction[Expression, Expression] = {
case UpdateFields(structExpr, fieldOps)
if fieldOps.forall(_.isInstanceOf[WithField]) &&
canOptimize(fieldOps.map(_.asInstanceOf[WithField].name)) =>
val caseSensitive = conf.caseSensitiveAnalysis
val withFields = fieldOps.map(_.asInstanceOf[WithField])
val names = withFields.map(_.name)
val values = withFields.map(_.valExpr)
val newNames = mutable.ArrayBuffer.empty[String]
val newValues = mutable.HashMap.empty[String, Expression]
// Used to remember the casing of the last instance
val nameMap = mutable.HashMap.empty[String, String]
names.zip(values).foreach { case (name, value) =>
val normalizedName = if (caseSensitive) name else name.toLowerCase(Locale.ROOT)
if (nameMap.contains(normalizedName)) {
newValues += normalizedName -> value
} else {
newNames += normalizedName
newValues += normalizedName -> value
}
nameMap += normalizedName -> name
}
val newWithFields = newNames.map(n => WithField(nameMap(n), newValues(n)))
UpdateFields(structExpr, newWithFields.toSeq)
case UpdateFields(UpdateFields(struct, fieldOps1), fieldOps2) =>
UpdateFields(struct, fieldOps1 ++ fieldOps2)
}
def apply(plan: LogicalPlan): LogicalPlan = plan.resolveExpressionsWithPruning(
_.containsPattern(UPDATE_FIELDS), ruleId)(optimizeUpdateFields)
}
/**
* Replaces [[UpdateFields]] expression with an evaluable expression.
*/
object ReplaceUpdateFieldsExpression extends Rule[LogicalPlan] {
def apply(plan: LogicalPlan): LogicalPlan = plan.transformAllExpressionsWithPruning(
_.containsPattern(UPDATE_FIELDS)) {
case u: UpdateFields => u.evalExpr
}
}
相关信息
相关文章
spark DecorrelateInnerQuery 源码
spark EliminateResolvedHint 源码
spark LimitPushDownThroughWindow 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦