spark OptimizeCsvJsonExprs 源码

  • 2022-10-20
  • 浏览 (250)

spark OptimizeCsvJsonExprs 代码

文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/OptimizeCsvJsonExprs.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.catalyst.optimizer

import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan
import org.apache.spark.sql.catalyst.rules.Rule
import org.apache.spark.sql.catalyst.trees.TreePattern.{CREATE_NAMED_STRUCT, EXTRACT_VALUE,
  JSON_TO_STRUCT}
import org.apache.spark.sql.types.{ArrayType, StructType}

/**
 * Simplify redundant csv/json related expressions.
 *
 * The optimization includes:
 * 1. JsonToStructs(StructsToJson(child)) => child.
 * 2. Prune unnecessary columns from GetStructField/GetArrayStructFields + JsonToStructs.
 * 3. CreateNamedStruct(JsonToStructs(json).col1, JsonToStructs(json).col2, ...) =>
 *      If(IsNull(json), nullStruct, KnownNotNull(JsonToStructs(prunedSchema, ..., json)))
 *      if JsonToStructs(json) is shared among all fields of CreateNamedStruct. `prunedSchema`
 *      contains all accessed fields in original CreateNamedStruct.
 * 4. Prune unnecessary columns from GetStructField + CsvToStructs.
 */
object OptimizeCsvJsonExprs extends Rule[LogicalPlan] {
  private def nameOfCorruptRecord = conf.columnNameOfCorruptRecord

  override def apply(plan: LogicalPlan): LogicalPlan = plan.transformWithPruning(
    _.containsAnyPattern(CREATE_NAMED_STRUCT, EXTRACT_VALUE, JSON_TO_STRUCT), ruleId) {
    case p =>
      val optimized = if (conf.jsonExpressionOptimization) {
        p.transformExpressionsWithPruning(
          _.containsAnyPattern(CREATE_NAMED_STRUCT, EXTRACT_VALUE, JSON_TO_STRUCT)
          )(jsonOptimization)
      } else {
        p
      }

      if (conf.csvExpressionOptimization) {
        optimized.transformExpressionsWithPruning(
          _.containsAnyPattern(EXTRACT_VALUE))(csvOptimization)
      } else {
        optimized
      }
  }

  private val jsonOptimization: PartialFunction[Expression, Expression] = {
    case c: CreateNamedStruct
        // If we create struct from various fields of the same `JsonToStructs`.
        if c.valExprs.forall { v =>
          v.isInstanceOf[GetStructField] &&
            v.asInstanceOf[GetStructField].child.isInstanceOf[JsonToStructs] &&
            v.children.head.semanticEquals(c.valExprs.head.children.head)
        } =>
      val jsonToStructs = c.valExprs.map(_.children.head)
      val sameFieldName = c.names.zip(c.valExprs).forall {
        case (name, valExpr: GetStructField) =>
          name.toString == valExpr.childSchema(valExpr.ordinal).name
        case _ => false
      }

      // Although `CreateNamedStruct` allows duplicated field names, e.g. "a int, a int",
      // `JsonToStructs` does not support parsing json with duplicated field names.
      val duplicateFields = c.names.map(_.toString).distinct.length != c.names.length

      // If we create struct from various fields of the same `JsonToStructs` and we don't
      // alias field names and there is no duplicated field in the struct.
      if (sameFieldName && !duplicateFields) {
        val fromJson = jsonToStructs.head.asInstanceOf[JsonToStructs].copy(schema = c.dataType)
        val nullFields = c.children.grouped(2).flatMap {
          case Seq(name, value) => Seq(name, Literal(null, value.dataType))
        }.toSeq

        If(IsNull(fromJson.child), c.copy(children = nullFields), KnownNotNull(fromJson))
      } else {
        c
      }

    case jsonToStructs @ JsonToStructs(_, options1,
      StructsToJson(options2, child, timeZoneId2), timeZoneId1)
        if options1.isEmpty && options2.isEmpty && timeZoneId1 == timeZoneId2 &&
          jsonToStructs.dataType == child.dataType =>
      // `StructsToJson` only fails when `JacksonGenerator` encounters data types it
      // cannot convert to JSON. But `StructsToJson.checkInputDataTypes` already
      // verifies its child's data types is convertible to JSON. But in
      // `StructsToJson(JsonToStructs(...))` case, we cannot verify input json string
      // so `JsonToStructs` might throw error in runtime. Thus we cannot optimize
      // this case similarly.
      child

    case g @ GetStructField(j @ JsonToStructs(schema: StructType, _, _, _), ordinal, _)
        if schema.length > 1 && j.options.isEmpty =>
        // Options here should be empty because the optimization should not be enabled
        // for some options. For example, when the parse mode is failfast it should not
        // optimize, and should force to parse the whole input JSON with failing fast for
        // an invalid input.
        // To be more conservative, it does not optimize when any option is set for now.
      val prunedSchema = StructType(Seq(schema(ordinal)))
      g.copy(child = j.copy(schema = prunedSchema), ordinal = 0)

    case g @ GetArrayStructFields(j @ JsonToStructs(schema: ArrayType, _, _, _), _, _, _, _)
        if schema.elementType.asInstanceOf[StructType].length > 1 && j.options.isEmpty =>
      val prunedSchema = ArrayType(StructType(Seq(g.field)), g.containsNull)
      g.copy(child = j.copy(schema = prunedSchema), ordinal = 0, numFields = 1)
  }

  private val csvOptimization: PartialFunction[Expression, Expression] = {
    case g @ GetStructField(c @ CsvToStructs(schema: StructType, _, _, _, None), ordinal, _)
        if schema.length > 1 && c.options.isEmpty && schema(ordinal).name != nameOfCorruptRecord =>
        // When the parse mode is permissive, and corrupt column is not selected, we can prune here
        // from `GetStructField`. To be more conservative, it does not optimize when any option
        // is set.
      val prunedSchema = StructType(Seq(schema(ordinal)))
      g.copy(child = c.copy(requiredSchema = Some(prunedSchema)), ordinal = 0)
  }
}

相关信息

spark 源码目录

相关文章

spark ComplexTypes 源码

spark CostBasedJoinReorder 源码

spark DecorrelateInnerQuery 源码

spark EliminateResolvedHint 源码

spark InjectRuntimeFilter 源码

spark InlineCTE 源码

spark LimitPushDownThroughWindow 源码

spark MergeScalarSubqueries 源码

spark NestedColumnAliasing 源码

spark NormalizeFloatingNumbers 源码

0  赞