spark ProbabilisticClassifier 源码

  • 2022-10-20
  • 浏览 (220)

spark ProbabilisticClassifier 代码

文件路径:/mllib/src/main/scala/org/apache/spark/ml/classification/ProbabilisticClassifier.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.ml.classification

import org.apache.spark.annotation.Since
import org.apache.spark.ml.linalg.{DenseVector, Vector, VectorUDT}
import org.apache.spark.ml.param.ParamMap
import org.apache.spark.ml.param.shared._
import org.apache.spark.ml.util.SchemaUtils
import org.apache.spark.sql.{DataFrame, Dataset}
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.{DataType, StructType}

/**
 * (private[classification])  Params for probabilistic classification.
 */
private[ml] trait ProbabilisticClassifierParams
  extends ClassifierParams with HasProbabilityCol with HasThresholds {
  override protected def validateAndTransformSchema(
      schema: StructType,
      fitting: Boolean,
      featuresDataType: DataType): StructType = {
    val parentSchema = super.validateAndTransformSchema(schema, fitting, featuresDataType)
    SchemaUtils.appendColumn(parentSchema, $(probabilityCol), new VectorUDT)
  }
}


/**
 * Single-label binary or multiclass classifier which can output class conditional probabilities.
 *
 * @tparam FeaturesType  Type of input features.  E.g., `Vector`
 * @tparam E  Concrete Estimator type
 * @tparam M  Concrete Model type
 */
abstract class ProbabilisticClassifier[
    FeaturesType,
    E <: ProbabilisticClassifier[FeaturesType, E, M],
    M <: ProbabilisticClassificationModel[FeaturesType, M]]
  extends Classifier[FeaturesType, E, M] with ProbabilisticClassifierParams {

  /** @group setParam */
  def setProbabilityCol(value: String): E = set(probabilityCol, value).asInstanceOf[E]

  /** @group setParam */
  def setThresholds(value: Array[Double]): E = set(thresholds, value).asInstanceOf[E]
}


/**
 * Model produced by a [[ProbabilisticClassifier]].
 * Classes are indexed {0, 1, ..., numClasses - 1}.
 *
 * @tparam FeaturesType  Type of input features.  E.g., `Vector`
 * @tparam M  Concrete Model type
 */
abstract class ProbabilisticClassificationModel[
    FeaturesType,
    M <: ProbabilisticClassificationModel[FeaturesType, M]]
  extends ClassificationModel[FeaturesType, M] with ProbabilisticClassifierParams {

  /** @group setParam */
  def setProbabilityCol(value: String): M = set(probabilityCol, value).asInstanceOf[M]

  /** @group setParam */
  def setThresholds(value: Array[Double]): M = {
    require(value.length == numClasses, this.getClass.getSimpleName +
      ".setThresholds() called with non-matching numClasses and thresholds.length." +
      s" numClasses=$numClasses, but thresholds has length ${value.length}")
    set(thresholds, value).asInstanceOf[M]
  }

  override def transformSchema(schema: StructType): StructType = {
    var outputSchema = super.transformSchema(schema)
    if ($(probabilityCol).nonEmpty) {
      outputSchema = SchemaUtils.updateAttributeGroupSize(outputSchema,
        $(probabilityCol), numClasses)
    }
    outputSchema
  }

  /**
   * Transforms dataset by reading from [[featuresCol]], and appending new columns as specified by
   * parameters:
   *  - predicted labels as [[predictionCol]] of type `Double`
   *  - raw predictions (confidences) as [[rawPredictionCol]] of type `Vector`
   *  - probability of each class as [[probabilityCol]] of type `Vector`.
   *
   * @param dataset input dataset
   * @return transformed dataset
   */
  override def transform(dataset: Dataset[_]): DataFrame = {
    val outputSchema = transformSchema(dataset.schema, logging = true)
    if (isDefined(thresholds)) {
      require($(thresholds).length == numClasses, this.getClass.getSimpleName +
        ".transform() called with non-matching numClasses and thresholds.length." +
        s" numClasses=$numClasses, but thresholds has length ${$(thresholds).length}")
    }

    // Output selected columns only.
    // This is a bit complicated since it tries to avoid repeated computation.
    var outputData = dataset
    var numColsOutput = 0
    if ($(rawPredictionCol).nonEmpty) {
      val predictRawUDF = udf { features: Any =>
        predictRaw(features.asInstanceOf[FeaturesType])
      }
      outputData = outputData.withColumn(getRawPredictionCol, predictRawUDF(col(getFeaturesCol)),
        outputSchema($(rawPredictionCol)).metadata)
      numColsOutput += 1
    }
    if ($(probabilityCol).nonEmpty) {
      val probCol = if ($(rawPredictionCol).nonEmpty) {
        udf(raw2probability _).apply(col($(rawPredictionCol)))
      } else {
        val probabilityUDF = udf { features: Any =>
          predictProbability(features.asInstanceOf[FeaturesType])
        }
        probabilityUDF(col($(featuresCol)))
      }
      outputData = outputData.withColumn($(probabilityCol), probCol,
        outputSchema($(probabilityCol)).metadata)
      numColsOutput += 1
    }
    if ($(predictionCol).nonEmpty) {
      val predCol = if ($(rawPredictionCol).nonEmpty) {
        udf(raw2prediction _).apply(col($(rawPredictionCol)))
      } else if ($(probabilityCol).nonEmpty) {
        udf(probability2prediction _).apply(col($(probabilityCol)))
      } else {
        val predictUDF = udf { features: Any =>
          predict(features.asInstanceOf[FeaturesType])
        }
        predictUDF(col($(featuresCol)))
      }
      outputData = outputData.withColumn($(predictionCol), predCol,
        outputSchema($(predictionCol)).metadata)
      numColsOutput += 1
    }

    if (numColsOutput == 0) {
      this.logWarning(s"$uid: ProbabilisticClassificationModel.transform() does nothing" +
        " because no output columns were set.")
    }
    outputData.toDF
  }

  /**
   * Estimate the probability of each class given the raw prediction,
   * doing the computation in-place.
   * These predictions are also called class conditional probabilities.
   *
   * This internal method is used to implement `transform()` and output [[probabilityCol]].
   *
   * @return Estimated class conditional probabilities (modified input vector)
   */
  protected def raw2probabilityInPlace(rawPrediction: Vector): Vector

  /**
   * Non-in-place version of `raw2probabilityInPlace()`
   */
  protected def raw2probability(rawPrediction: Vector): Vector = {
    val probs = rawPrediction.copy
    raw2probabilityInPlace(probs)
  }

  override protected def raw2prediction(rawPrediction: Vector): Double = {
    if (!isDefined(thresholds)) {
      rawPrediction.argmax
    } else {
      probability2prediction(raw2probability(rawPrediction))
    }
  }

  /**
   * Predict the probability of each class given the features.
   * These predictions are also called class conditional probabilities.
   *
   * This internal method is used to implement `transform()` and output [[probabilityCol]].
   *
   * @return Estimated class conditional probabilities
   */
  @Since("3.0.0")
  def predictProbability(features: FeaturesType): Vector = {
    val rawPreds = predictRaw(features)
    raw2probabilityInPlace(rawPreds)
  }

  /**
   * Given a vector of class conditional probabilities, select the predicted label.
   * This supports thresholds which favor particular labels.
   * @return  predicted label
   */
  protected def probability2prediction(probability: Vector): Double = {
    if (!isDefined(thresholds)) {
      probability.argmax
    } else {
      val thresholds = getThresholds
      var argMax = 0
      var max = Double.NegativeInfinity
      var i = 0
      val probabilitySize = probability.size
      while (i < probabilitySize) {
        // Thresholds are all > 0, excepting that at most one may be 0.
        // The single class whose threshold is 0, if any, will always be predicted
        // ('scaled' = +Infinity). However in the case that this class also has
        // 0 probability, the class will not be selected ('scaled' is NaN).
        val scaled = probability(i) / thresholds(i)
        if (scaled > max) {
          max = scaled
          argMax = i
        }
        i += 1
      }
      argMax
    }
  }

  /**
   *If the probability and prediction columns are set, this method returns the current model,
   * otherwise it generates new columns for them and sets them as columns on a new copy of
   * the current model
   */
  override private[classification] def findSummaryModel():
  (ProbabilisticClassificationModel[FeaturesType, M], String, String) = {
    val model = if ($(probabilityCol).isEmpty && $(predictionCol).isEmpty) {
      copy(ParamMap.empty)
        .setProbabilityCol("probability_" + java.util.UUID.randomUUID.toString)
        .setPredictionCol("prediction_" + java.util.UUID.randomUUID.toString)
    } else if ($(probabilityCol).isEmpty) {
      copy(ParamMap.empty).setProbabilityCol("probability_" + java.util.UUID.randomUUID.toString)
    } else if ($(predictionCol).isEmpty) {
      copy(ParamMap.empty).setPredictionCol("prediction_" + java.util.UUID.randomUUID.toString)
    } else {
      this
    }
    (model, model.getProbabilityCol, model.getPredictionCol)
  }
}

private[ml] object ProbabilisticClassificationModel {

  /**
   * Normalize a vector of raw predictions to be a multinomial probability vector, in place.
   *
   * The input raw predictions should be nonnegative.
   * The output vector sums to 1.
   *
   * NOTE: This is NOT applicable to all models, only ones which effectively use class
   *       instance counts for raw predictions.
   *
   * @throws IllegalArgumentException if the input vector is all-0 or including negative values
   */
  def normalizeToProbabilitiesInPlace(v: DenseVector): Unit = {
    v.values.foreach(value => require(value >= 0,
      "The input raw predictions should be nonnegative."))
    val sum = v.values.sum
    require(sum > 0, "Can't normalize the 0-vector.")
    var i = 0
    val size = v.size
    while (i < size) {
      v.values(i) /= sum
      i += 1
    }
  }
}

相关信息

spark 源码目录

相关文章

spark ClassificationSummary 源码

spark Classifier 源码

spark DecisionTreeClassifier 源码

spark FMClassifier 源码

spark GBTClassifier 源码

spark LinearSVC 源码

spark LogisticRegression 源码

spark MultilayerPerceptronClassifier 源码

spark NaiveBayes 源码

spark OneVsRest 源码

0  赞