spark MultilayerPerceptronClassifier 源码

  • 2022-10-20
  • 浏览 (263)

spark MultilayerPerceptronClassifier 代码

文件路径:/mllib/src/main/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifier.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.ml.classification

import org.apache.hadoop.fs.Path

import org.apache.spark.annotation.Since
import org.apache.spark.ml.ann.{FeedForwardTopology, FeedForwardTrainer}
import org.apache.spark.ml.feature.OneHotEncoderModel
import org.apache.spark.ml.linalg.Vector
import org.apache.spark.ml.param._
import org.apache.spark.ml.param.shared._
import org.apache.spark.ml.util._
import org.apache.spark.ml.util.DatasetUtils._
import org.apache.spark.ml.util.Instrumentation.instrumented
import org.apache.spark.sql._
import org.apache.spark.util.VersionUtils.majorMinorVersion

/** Params for Multilayer Perceptron. */
private[classification] trait MultilayerPerceptronParams extends ProbabilisticClassifierParams
  with HasSeed with HasMaxIter with HasTol with HasStepSize with HasSolver with HasBlockSize {

  import MultilayerPerceptronClassifier._

  /**
   * Layer sizes including input size and output size.
   *
   * @group param
   */
  @Since("1.5.0")
  final val layers: IntArrayParam = new IntArrayParam(this, "layers",
    "Sizes of layers from input layer to output layer. " +
      "E.g., Array(780, 100, 10) means 780 inputs, " +
      "one hidden layer with 100 neurons and output layer of 10 neurons.",
    (t: Array[Int]) => t.forall(ParamValidators.gt(0)) && t.length > 1)

  /** @group getParam */
  @Since("1.5.0")
  final def getLayers: Array[Int] = $(layers)

  /**
   * The solver algorithm for optimization.
   * Supported options: "gd" (minibatch gradient descent) or "l-bfgs".
   * Default: "l-bfgs"
   *
   * @group expertParam
   */
  @Since("2.0.0")
  final override val solver: Param[String] = new Param[String](this, "solver",
    "The solver algorithm for optimization. Supported options: " +
      s"${supportedSolvers.mkString(", ")}. (Default l-bfgs)",
    ParamValidators.inArray[String](supportedSolvers))

  /**
   * The initial weights of the model.
   *
   * @group expertParam
   */
  @Since("2.0.0")
  final val initialWeights: Param[Vector] = new Param[Vector](this, "initialWeights",
    "The initial weights of the model")

  /** @group expertGetParam */
  @Since("2.0.0")
  final def getInitialWeights: Vector = $(initialWeights)

  setDefault(maxIter -> 100, tol -> 1e-6, blockSize -> 128,
    solver -> LBFGS, stepSize -> 0.03)
}

/**
 * Classifier trainer based on the Multilayer Perceptron.
 * Each layer has sigmoid activation function, output layer has softmax.
 * Number of inputs has to be equal to the size of feature vectors.
 * Number of outputs has to be equal to the total number of labels.
 *
 */
@Since("1.5.0")
class MultilayerPerceptronClassifier @Since("1.5.0") (
    @Since("1.5.0") override val uid: String)
  extends ProbabilisticClassifier[Vector, MultilayerPerceptronClassifier,
    MultilayerPerceptronClassificationModel]
  with MultilayerPerceptronParams with DefaultParamsWritable {

  @Since("1.5.0")
  def this() = this(Identifiable.randomUID("mlpc"))

  /**
   * Sets the value of param [[layers]].
   *
   * @group setParam
   */
  @Since("1.5.0")
  def setLayers(value: Array[Int]): this.type = set(layers, value)

  /**
   * Sets the value of param [[blockSize]].
   * Default is 128.
   *
   * @group expertSetParam
   */
  @Since("1.5.0")
  def setBlockSize(value: Int): this.type = set(blockSize, value)

  /**
   * Sets the value of param [[solver]].
   * Default is "l-bfgs".
   *
   * @group expertSetParam
   */
  @Since("2.0.0")
  def setSolver(value: String): this.type = set(solver, value)

  /**
   * Set the maximum number of iterations.
   * Default is 100.
   *
   * @group setParam
   */
  @Since("1.5.0")
  def setMaxIter(value: Int): this.type = set(maxIter, value)

  /**
   * Set the convergence tolerance of iterations.
   * Smaller value will lead to higher accuracy with the cost of more iterations.
   * Default is 1E-6.
   *
   * @group setParam
   */
  @Since("1.5.0")
  def setTol(value: Double): this.type = set(tol, value)

  /**
   * Set the seed for weights initialization if weights are not set
   *
   * @group setParam
   */
  @Since("1.5.0")
  def setSeed(value: Long): this.type = set(seed, value)

  /**
   * Sets the value of param [[initialWeights]].
   *
   * @group expertSetParam
   */
  @Since("2.0.0")
  def setInitialWeights(value: Vector): this.type = set(initialWeights, value)

  /**
   * Sets the value of param [[stepSize]] (applicable only for solver "gd").
   * Default is 0.03.
   *
   * @group setParam
   */
  @Since("2.0.0")
  def setStepSize(value: Double): this.type = set(stepSize, value)

  @Since("1.5.0")
  override def copy(extra: ParamMap): MultilayerPerceptronClassifier = defaultCopy(extra)

  /**
   * Train a model using the given dataset and parameters.
   * Developers can implement this instead of `fit()` to avoid dealing with schema validation
   * and copying parameters into the model.
   *
   * @param dataset Training dataset
   * @return Fitted model
   */
  override protected def train(
      dataset: Dataset[_]): MultilayerPerceptronClassificationModel = instrumented { instr =>
    instr.logPipelineStage(this)
    instr.logDataset(dataset)
    instr.logParams(this, labelCol, featuresCol, predictionCol, rawPredictionCol, layers, maxIter,
      tol, blockSize, solver, stepSize, seed, thresholds)

    val myLayers = $(layers)
    val labels = myLayers.last
    instr.logNumClasses(labels)
    instr.logNumFeatures(myLayers.head)

    val validated = dataset.select(
      checkClassificationLabels($(labelCol), Some(labels)).as("_validated_label_"),
      checkNonNanVectors($(featuresCol)).as("_validated_features_")
    )

    // One-hot encoding for labels using OneHotEncoderModel.
    // As we already know the length of encoding, we skip fitting and directly create
    // the model.
    val encodedLabelCol = "_encoded" + $(labelCol)
    val encodeModel = new OneHotEncoderModel(uid, Array(labels))
      .setInputCols(Array("_validated_label_"))
      .setOutputCols(Array(encodedLabelCol))
      .setDropLast(false)
    val encodedDataset = encodeModel.transform(validated)
    val data = encodedDataset.select("_validated_features_", encodedLabelCol)
      .rdd.map { case Row(features: Vector, encodedLabel: Vector) => (features, encodedLabel) }
    val topology = FeedForwardTopology.multiLayerPerceptron(myLayers, softmaxOnTop = true)
    val trainer = new FeedForwardTrainer(topology, myLayers(0), myLayers.last)
    if (isDefined(initialWeights)) {
      trainer.setWeights($(initialWeights))
    } else {
      trainer.setSeed($(seed))
    }
    if ($(solver) == MultilayerPerceptronClassifier.LBFGS) {
      trainer.LBFGSOptimizer
        .setConvergenceTol($(tol))
        .setNumIterations($(maxIter))
    } else if ($(solver) == MultilayerPerceptronClassifier.GD) {
      trainer.SGDOptimizer
        .setNumIterations($(maxIter))
        .setConvergenceTol($(tol))
        .setStepSize($(stepSize))
    } else {
      throw new IllegalArgumentException(
        s"The solver $solver is not supported by MultilayerPerceptronClassifier.")
    }
    trainer.setStackSize($(blockSize))
    val (mlpModel, objectiveHistory) = trainer.train(data)
    createModel(dataset, mlpModel.weights, objectiveHistory)
  }

  private def createModel(
      dataset: Dataset[_],
      weights: Vector,
      objectiveHistory: Array[Double]): MultilayerPerceptronClassificationModel = {
    val model = copyValues(new MultilayerPerceptronClassificationModel(uid, weights))

    val (summaryModel, _, predictionColName) = model.findSummaryModel()
    val summary = new MultilayerPerceptronClassificationTrainingSummaryImpl(
      summaryModel.transform(dataset),
      predictionColName,
      $(labelCol),
      "",
      objectiveHistory)
    model.setSummary(Some(summary))
  }
}

@Since("2.0.0")
object MultilayerPerceptronClassifier
  extends DefaultParamsReadable[MultilayerPerceptronClassifier] {

  /** String name for "l-bfgs" solver. */
  private[classification] val LBFGS = "l-bfgs"

  /** String name for "gd" (minibatch gradient descent) solver. */
  private[classification] val GD = "gd"

  /** Set of solvers that MultilayerPerceptronClassifier supports. */
  private[classification] val supportedSolvers = Array(LBFGS, GD)

  @Since("2.0.0")
  override def load(path: String): MultilayerPerceptronClassifier = super.load(path)
}

/**
 * Classification model based on the Multilayer Perceptron.
 * Each layer has sigmoid activation function, output layer has softmax.
 *
 * @param uid uid
 * @param weights the weights of layers
 */
@Since("1.5.0")
class MultilayerPerceptronClassificationModel private[ml] (
    @Since("1.5.0") override val uid: String,
    @Since("2.0.0") val weights: Vector)
  extends ProbabilisticClassificationModel[Vector, MultilayerPerceptronClassificationModel]
  with MultilayerPerceptronParams with Serializable with MLWritable
  with HasTrainingSummary[MultilayerPerceptronClassificationTrainingSummary]{

  @Since("1.6.0")
  override lazy val numFeatures: Int = $(layers).head

  @transient private[ml] lazy val mlpModel = FeedForwardTopology
    .multiLayerPerceptron($(layers), softmaxOnTop = true)
    .model(weights)

  /**
   * Gets summary of model on training set. An exception is thrown
   * if `hasSummary` is false.
   */
  @Since("3.1.0")
  override def summary: MultilayerPerceptronClassificationTrainingSummary = super.summary

  /**
   * Evaluates the model on a test dataset.
   *
   * @param dataset Test dataset to evaluate model on.
   */
  @Since("3.1.0")
  def evaluate(dataset: Dataset[_]): MultilayerPerceptronClassificationSummary = {
    // Handle possible missing or invalid probability or prediction columns
    val (summaryModel, _, predictionColName) = findSummaryModel()
    new MultilayerPerceptronClassificationSummaryImpl(summaryModel.transform(dataset),
      predictionColName, $(labelCol), "")
  }

  /**
   * Predict label for the given features.
   * This internal method is used to implement `transform()` and output [[predictionCol]].
   */
  override def predict(features: Vector): Double = {
    mlpModel.predict(features).argmax.toDouble
  }

  @Since("1.5.0")
  override def copy(extra: ParamMap): MultilayerPerceptronClassificationModel = {
    val copied = new MultilayerPerceptronClassificationModel(uid, weights)
      .setParent(parent)
    copyValues(copied, extra)
  }

  @Since("2.0.0")
  override def write: MLWriter =
    new MultilayerPerceptronClassificationModel.MultilayerPerceptronClassificationModelWriter(this)

  override protected def raw2probabilityInPlace(rawPrediction: Vector): Vector = {
    mlpModel.raw2ProbabilityInPlace(rawPrediction)
  }

  @Since("3.0.0")
  override def predictRaw(features: Vector): Vector = mlpModel.predictRaw(features)

  override def numClasses: Int = $(layers).last

  @Since("3.0.0")
  override def toString: String = {
    s"MultilayerPerceptronClassificationModel: uid=$uid, numLayers=${$(layers).length}, " +
      s"numClasses=$numClasses, numFeatures=$numFeatures"
  }
}

@Since("2.0.0")
object MultilayerPerceptronClassificationModel
  extends MLReadable[MultilayerPerceptronClassificationModel] {

  @Since("2.0.0")
  override def read: MLReader[MultilayerPerceptronClassificationModel] =
    new MultilayerPerceptronClassificationModelReader

  @Since("2.0.0")
  override def load(path: String): MultilayerPerceptronClassificationModel = super.load(path)

  /** [[MLWriter]] instance for [[MultilayerPerceptronClassificationModel]] */
  private[MultilayerPerceptronClassificationModel]
  class MultilayerPerceptronClassificationModelWriter(
      instance: MultilayerPerceptronClassificationModel) extends MLWriter {

    private case class Data(weights: Vector)

    override protected def saveImpl(path: String): Unit = {
      // Save metadata and Params
      DefaultParamsWriter.saveMetadata(instance, path, sc)
      // Save model data: weights
      val data = Data(instance.weights)
      val dataPath = new Path(path, "data").toString
      sparkSession.createDataFrame(Seq(data)).repartition(1).write.parquet(dataPath)
    }
  }

  private class MultilayerPerceptronClassificationModelReader
    extends MLReader[MultilayerPerceptronClassificationModel] {

    /** Checked against metadata when loading model */
    private val className = classOf[MultilayerPerceptronClassificationModel].getName

    override def load(path: String): MultilayerPerceptronClassificationModel = {
      val metadata = DefaultParamsReader.loadMetadata(path, sc, className)
      val (majorVersion, _) = majorMinorVersion(metadata.sparkVersion)

      val dataPath = new Path(path, "data").toString
      val df = sparkSession.read.parquet(dataPath)
      val model = if (majorVersion < 3) { // model prior to 3.0.0
        val data = df.select("layers", "weights").head()
        val layers = data.getAs[Seq[Int]](0).toArray
        val weights = data.getAs[Vector](1)
        val model = new MultilayerPerceptronClassificationModel(metadata.uid, weights)
        model.set("layers", layers)
      } else {
        val data = df.select("weights").head()
        val weights = data.getAs[Vector](0)
        new MultilayerPerceptronClassificationModel(metadata.uid, weights)
      }
      metadata.getAndSetParams(model)
      model
    }
  }
}


/**
 * Abstraction for MultilayerPerceptronClassification results for a given model.
 */
sealed trait MultilayerPerceptronClassificationSummary extends ClassificationSummary

/**
 * Abstraction for MultilayerPerceptronClassification training results.
 */
sealed trait MultilayerPerceptronClassificationTrainingSummary
  extends MultilayerPerceptronClassificationSummary with TrainingSummary

/**
 * MultilayerPerceptronClassification training results.
 *
 * @param predictions dataframe output by the model's `transform` method.
 * @param predictionCol field in "predictions" which gives the prediction for a data instance as a
 *                      double.
 * @param labelCol field in "predictions" which gives the true label of each instance.
 * @param weightCol field in "predictions" which gives the weight of each instance.
 * @param objectiveHistory objective function (scaled loss + regularization) at each iteration.
 */
private class MultilayerPerceptronClassificationTrainingSummaryImpl(
    predictions: DataFrame,
    predictionCol: String,
    labelCol: String,
    weightCol: String,
    override val objectiveHistory: Array[Double])
  extends MultilayerPerceptronClassificationSummaryImpl(
    predictions, predictionCol, labelCol, weightCol)
    with MultilayerPerceptronClassificationTrainingSummary

/**
 * MultilayerPerceptronClassification results for a given model.
 *
 * @param predictions dataframe output by the model's `transform` method.
 * @param predictionCol field in "predictions" which gives the prediction for a data instance as a
 *                      double.
 * @param labelCol field in "predictions" which gives the true label of each instance.
 * @param weightCol field in "predictions" which gives the weight of each instance.
 */
private class MultilayerPerceptronClassificationSummaryImpl(
    @transient override val predictions: DataFrame,
    override val predictionCol: String,
    override val labelCol: String,
    override val weightCol: String)
  extends MultilayerPerceptronClassificationSummary

相关信息

spark 源码目录

相关文章

spark ClassificationSummary 源码

spark Classifier 源码

spark DecisionTreeClassifier 源码

spark FMClassifier 源码

spark GBTClassifier 源码

spark LinearSVC 源码

spark LogisticRegression 源码

spark NaiveBayes 源码

spark OneVsRest 源码

spark ProbabilisticClassifier 源码

0  赞