spark DecisionTreeClassifier 源码

  • 2022-10-20
  • 浏览 (232)

spark DecisionTreeClassifier 代码

文件路径:/mllib/src/main/scala/org/apache/spark/ml/classification/DecisionTreeClassifier.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.ml.classification

import org.apache.hadoop.fs.Path
import org.json4s.{DefaultFormats, JObject}
import org.json4s.JsonDSL._

import org.apache.spark.annotation.Since
import org.apache.spark.ml.feature._
import org.apache.spark.ml.linalg.{DenseVector, SparseVector, Vector, Vectors}
import org.apache.spark.ml.param.ParamMap
import org.apache.spark.ml.tree._
import org.apache.spark.ml.tree.{DecisionTreeModel, Node, TreeClassifierParams}
import org.apache.spark.ml.tree.DecisionTreeModelReadWrite._
import org.apache.spark.ml.tree.impl.RandomForest
import org.apache.spark.ml.util._
import org.apache.spark.ml.util.DatasetUtils._
import org.apache.spark.ml.util.Instrumentation.instrumented
import org.apache.spark.mllib.tree.configuration.{Algo => OldAlgo, Strategy => OldStrategy}
import org.apache.spark.mllib.tree.model.{DecisionTreeModel => OldDecisionTreeModel}
import org.apache.spark.sql._
import org.apache.spark.sql.functions.{col, udf}
import org.apache.spark.sql.types.StructType

/**
 * Decision tree learning algorithm (http://en.wikipedia.org/wiki/Decision_tree_learning)
 * for classification.
 * It supports both binary and multiclass labels, as well as both continuous and categorical
 * features.
 */
@Since("1.4.0")
class DecisionTreeClassifier @Since("1.4.0") (
    @Since("1.4.0") override val uid: String)
  extends ProbabilisticClassifier[Vector, DecisionTreeClassifier, DecisionTreeClassificationModel]
  with DecisionTreeClassifierParams with DefaultParamsWritable {

  @Since("1.4.0")
  def this() = this(Identifiable.randomUID("dtc"))

  // Override parameter setters from parent trait for Java API compatibility.

  /** @group setParam */
  @Since("1.4.0")
  def setMaxDepth(value: Int): this.type = set(maxDepth, value)

  /** @group setParam */
  @Since("1.4.0")
  def setMaxBins(value: Int): this.type = set(maxBins, value)

  /** @group setParam */
  @Since("1.4.0")
  def setMinInstancesPerNode(value: Int): this.type = set(minInstancesPerNode, value)

  /** @group setParam */
  @Since("3.0.0")
  def setMinWeightFractionPerNode(value: Double): this.type = set(minWeightFractionPerNode, value)

  @Since("1.4.0")
  def setMinInfoGain(value: Double): this.type = set(minInfoGain, value)

  /** @group expertSetParam */
  @Since("1.4.0")
  def setMaxMemoryInMB(value: Int): this.type = set(maxMemoryInMB, value)

  /** @group expertSetParam */
  @Since("1.4.0")
  def setCacheNodeIds(value: Boolean): this.type = set(cacheNodeIds, value)

  /**
   * Specifies how often to checkpoint the cached node IDs.
   * E.g. 10 means that the cache will get checkpointed every 10 iterations.
   * This is only used if cacheNodeIds is true and if the checkpoint directory is set in
   * [[org.apache.spark.SparkContext]].
   * Must be at least 1.
   * (default = 10)
   * @group setParam
   */
  @Since("1.4.0")
  def setCheckpointInterval(value: Int): this.type = set(checkpointInterval, value)

  /** @group setParam */
  @Since("1.4.0")
  def setImpurity(value: String): this.type = set(impurity, value)

  /** @group setParam */
  @Since("1.6.0")
  def setSeed(value: Long): this.type = set(seed, value)

  /**
   * Sets the value of param [[weightCol]].
   * If this is not set or empty, we treat all instance weights as 1.0.
   * Default is not set, so all instances have weight one.
   *
   * @group setParam
   */
  @Since("3.0.0")
  def setWeightCol(value: String): this.type = set(weightCol, value)

  override protected def train(
      dataset: Dataset[_]): DecisionTreeClassificationModel = instrumented { instr =>
    instr.logPipelineStage(this)
    instr.logDataset(dataset)
    val categoricalFeatures = MetadataUtils.getCategoricalFeatures(dataset.schema($(featuresCol)))
    val numClasses = getNumClasses(dataset, $(labelCol))

    if (isDefined(thresholds)) {
      require($(thresholds).length == numClasses, this.getClass.getSimpleName +
        ".train() called with non-matching numClasses and thresholds.length." +
        s" numClasses=$numClasses, but thresholds has length ${$(thresholds).length}")
    }

    val instances = dataset.select(
      checkClassificationLabels($(labelCol), Some(numClasses)),
      checkNonNegativeWeights(get(weightCol)),
      checkNonNanVectors($(featuresCol))
    ).rdd.map { case Row(l: Double, w: Double, v: Vector) => Instance(l, w, v)
    }.setName("training instances")

    val strategy = getOldStrategy(categoricalFeatures, numClasses)
    require(!strategy.bootstrap, "DecisionTreeClassifier does not need bootstrap sampling")
    instr.logNumClasses(numClasses)
    instr.logParams(this, labelCol, featuresCol, predictionCol, rawPredictionCol,
      probabilityCol, leafCol, maxDepth, maxBins, minInstancesPerNode, minInfoGain,
      maxMemoryInMB, cacheNodeIds, checkpointInterval, impurity, seed, thresholds)

    val trees = RandomForest.run(instances, strategy, numTrees = 1, featureSubsetStrategy = "all",
      seed = $(seed), instr = Some(instr), parentUID = Some(uid))

    trees.head.asInstanceOf[DecisionTreeClassificationModel]
  }

  /** (private[ml]) Create a Strategy instance to use with the old API. */
  private[ml] def getOldStrategy(
      categoricalFeatures: Map[Int, Int],
      numClasses: Int): OldStrategy = {
    super.getOldStrategy(categoricalFeatures, numClasses, OldAlgo.Classification, getOldImpurity,
      subsamplingRate = 1.0)
  }

  @Since("1.4.1")
  override def copy(extra: ParamMap): DecisionTreeClassifier = defaultCopy(extra)
}

@Since("1.4.0")
object DecisionTreeClassifier extends DefaultParamsReadable[DecisionTreeClassifier] {
  /** Accessor for supported impurities: entropy, gini */
  @Since("1.4.0")
  final val supportedImpurities: Array[String] = TreeClassifierParams.supportedImpurities

  @Since("2.0.0")
  override def load(path: String): DecisionTreeClassifier = super.load(path)
}

/**
 * Decision tree model (http://en.wikipedia.org/wiki/Decision_tree_learning) for classification.
 * It supports both binary and multiclass labels, as well as both continuous and categorical
 * features.
 */
@Since("1.4.0")
class DecisionTreeClassificationModel private[ml] (
    @Since("1.4.0")override val uid: String,
    @Since("1.4.0")override val rootNode: Node,
    @Since("1.6.0")override val numFeatures: Int,
    @Since("1.5.0")override val numClasses: Int)
  extends ProbabilisticClassificationModel[Vector, DecisionTreeClassificationModel]
  with DecisionTreeModel with DecisionTreeClassifierParams with MLWritable with Serializable {

  require(rootNode != null,
    "DecisionTreeClassificationModel given null rootNode, but it requires a non-null rootNode.")

  /**
   * Construct a decision tree classification model.
   *
   * @param rootNode  Root node of tree, with other nodes attached.
   */
  private[ml] def this(rootNode: Node, numFeatures: Int, numClasses: Int) =
    this(Identifiable.randomUID("dtc"), rootNode, numFeatures, numClasses)

  override def predict(features: Vector): Double = {
    rootNode.predictImpl(features).prediction
  }

  @Since("3.0.0")
  override def transformSchema(schema: StructType): StructType = {
    var outputSchema = super.transformSchema(schema)
    if ($(leafCol).nonEmpty) {
      outputSchema = SchemaUtils.updateField(outputSchema, getLeafField($(leafCol)))
    }
    outputSchema
  }

  override def transform(dataset: Dataset[_]): DataFrame = {
    val outputSchema = transformSchema(dataset.schema, logging = true)

    val outputData = super.transform(dataset)
    if ($(leafCol).nonEmpty) {
      val leafUDF = udf { features: Vector => predictLeaf(features) }
      outputData.withColumn($(leafCol), leafUDF(col($(featuresCol))),
        outputSchema($(leafCol)).metadata)
    } else {
      outputData
    }
  }

  @Since("3.0.0")
  override def predictRaw(features: Vector): Vector = {
    Vectors.dense(rootNode.predictImpl(features).impurityStats.stats.clone())
  }

  override protected def raw2probabilityInPlace(rawPrediction: Vector): Vector = {
    rawPrediction match {
      case dv: DenseVector =>
        ProbabilisticClassificationModel.normalizeToProbabilitiesInPlace(dv)
        dv
      case sv: SparseVector =>
        throw new RuntimeException("Unexpected error in DecisionTreeClassificationModel:" +
          " raw2probabilityInPlace encountered SparseVector")
    }
  }

  @Since("1.4.0")
  override def copy(extra: ParamMap): DecisionTreeClassificationModel = {
    copyValues(new DecisionTreeClassificationModel(uid, rootNode, numFeatures, numClasses), extra)
      .setParent(parent)
  }

  @Since("1.4.0")
  override def toString: String = {
    s"DecisionTreeClassificationModel: uid=$uid, depth=$depth, numNodes=$numNodes, " +
      s"numClasses=$numClasses, numFeatures=$numFeatures"
  }

  /**
   * Estimate of the importance of each feature.
   *
   * This generalizes the idea of "Gini" importance to other losses,
   * following the explanation of Gini importance from "Random Forests" documentation
   * by Leo Breiman and Adele Cutler, and following the implementation from scikit-learn.
   *
   * This feature importance is calculated as follows:
   *   - importance(feature j) = sum (over nodes which split on feature j) of the gain,
   *     where gain is scaled by the number of instances passing through node
   *   - Normalize importances for tree to sum to 1.
   *
   * @note Feature importance for single decision trees can have high variance due to
   * correlated predictor variables. Consider using a [[RandomForestClassifier]]
   * to determine feature importance instead.
   */
  @Since("2.0.0")
  lazy val featureImportances: Vector = TreeEnsembleModel.featureImportances(this, numFeatures)

  /** Convert to spark.mllib DecisionTreeModel (losing some information) */
  override private[spark] def toOld: OldDecisionTreeModel = {
    new OldDecisionTreeModel(rootNode.toOld(1), OldAlgo.Classification)
  }

  @Since("2.0.0")
  override def write: MLWriter =
    new DecisionTreeClassificationModel.DecisionTreeClassificationModelWriter(this)
}

@Since("2.0.0")
object DecisionTreeClassificationModel extends MLReadable[DecisionTreeClassificationModel] {

  @Since("2.0.0")
  override def read: MLReader[DecisionTreeClassificationModel] =
    new DecisionTreeClassificationModelReader

  @Since("2.0.0")
  override def load(path: String): DecisionTreeClassificationModel = super.load(path)

  private[DecisionTreeClassificationModel]
  class DecisionTreeClassificationModelWriter(instance: DecisionTreeClassificationModel)
    extends MLWriter {

    override protected def saveImpl(path: String): Unit = {
      val extraMetadata: JObject = Map(
        "numFeatures" -> instance.numFeatures,
        "numClasses" -> instance.numClasses)
      DefaultParamsWriter.saveMetadata(instance, path, sc, Some(extraMetadata))
      val (nodeData, _) = NodeData.build(instance.rootNode, 0)
      val dataPath = new Path(path, "data").toString
      val numDataParts = NodeData.inferNumPartitions(instance.numNodes)
      sparkSession.createDataFrame(nodeData).repartition(numDataParts).write.parquet(dataPath)
    }
  }

  private class DecisionTreeClassificationModelReader
    extends MLReader[DecisionTreeClassificationModel] {

    /** Checked against metadata when loading model */
    private val className = classOf[DecisionTreeClassificationModel].getName

    override def load(path: String): DecisionTreeClassificationModel = {
      implicit val format = DefaultFormats
      val metadata = DefaultParamsReader.loadMetadata(path, sc, className)
      val numFeatures = (metadata.metadata \ "numFeatures").extract[Int]
      val numClasses = (metadata.metadata \ "numClasses").extract[Int]
      val root = loadTreeNodes(path, metadata, sparkSession)
      val model = new DecisionTreeClassificationModel(metadata.uid, root, numFeatures, numClasses)
      metadata.getAndSetParams(model)
      model
    }
  }

  /** Convert a model from the old API */
  private[ml] def fromOld(
      oldModel: OldDecisionTreeModel,
      parent: DecisionTreeClassifier,
      categoricalFeatures: Map[Int, Int],
      numFeatures: Int = -1): DecisionTreeClassificationModel = {
    require(oldModel.algo == OldAlgo.Classification,
      s"Cannot convert non-classification DecisionTreeModel (old API) to" +
        s" DecisionTreeClassificationModel (new API).  Algo is: ${oldModel.algo}")
    val rootNode = Node.fromOld(oldModel.topNode, categoricalFeatures)
    val uid = if (parent != null) parent.uid else Identifiable.randomUID("dtc")
    // Can't infer number of features from old model, so default to -1
    new DecisionTreeClassificationModel(uid, rootNode, numFeatures, -1)
  }
}

相关信息

spark 源码目录

相关文章

spark ClassificationSummary 源码

spark Classifier 源码

spark FMClassifier 源码

spark GBTClassifier 源码

spark LinearSVC 源码

spark LogisticRegression 源码

spark MultilayerPerceptronClassifier 源码

spark NaiveBayes 源码

spark OneVsRest 源码

spark ProbabilisticClassifier 源码

0  赞