spark ResolvePartitionSpec 源码
spark ResolvePartitionSpec 代码
文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/ResolvePartitionSpec.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.catalyst.analysis
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.catalog.CatalogTypes.TablePartitionSpec
import org.apache.spark.sql.catalyst.expressions.{Cast, Literal}
import org.apache.spark.sql.catalyst.plans.logical.{LogicalPlan, V2PartitionCommand}
import org.apache.spark.sql.catalyst.rules.Rule
import org.apache.spark.sql.catalyst.trees.TreePattern.COMMAND
import org.apache.spark.sql.catalyst.util.CharVarcharUtils
import org.apache.spark.sql.connector.catalog.SupportsPartitionManagement
import org.apache.spark.sql.types._
import org.apache.spark.sql.util.PartitioningUtils.{normalizePartitionSpec, requireExactMatchedPartitionSpec}
/**
* Resolve [[UnresolvedPartitionSpec]] to [[ResolvedPartitionSpec]] in partition related commands.
*/
object ResolvePartitionSpec extends Rule[LogicalPlan] {
def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsWithPruning(
_.containsPattern(COMMAND)) {
case command: V2PartitionCommand if command.childrenResolved && !command.resolved =>
command.table match {
case r @ ResolvedTable(_, _, table: SupportsPartitionManagement, _) =>
command.transformExpressions {
case partSpecs: UnresolvedPartitionSpec =>
val partitionSchema = table.partitionSchema()
resolvePartitionSpec(
r.name,
partSpecs,
partitionSchema,
command.allowPartialPartitionSpec)
}
case _ => command
}
}
private def resolvePartitionSpec(
tableName: String,
partSpec: UnresolvedPartitionSpec,
partSchema: StructType,
allowPartitionSpec: Boolean): ResolvedPartitionSpec = {
val normalizedSpec = normalizePartitionSpec(
partSpec.spec,
partSchema,
tableName,
conf.resolver)
if (!allowPartitionSpec) {
requireExactMatchedPartitionSpec(tableName, normalizedSpec, partSchema.fieldNames)
}
val partitionNames = normalizedSpec.keySet
val requestedFields = partSchema.filter(field => partitionNames.contains(field.name))
ResolvedPartitionSpec(
requestedFields.map(_.name),
convertToPartIdent(normalizedSpec, requestedFields),
partSpec.location)
}
private[sql] def convertToPartIdent(
partitionSpec: TablePartitionSpec,
schema: Seq[StructField]): InternalRow = {
val partValues = schema.map { part =>
val raw = partitionSpec.get(part.name).orNull
val dt = CharVarcharUtils.replaceCharVarcharWithString(part.dataType)
Cast(Literal.create(raw, StringType), dt, Some(conf.sessionLocalTimeZone)).eval()
}
InternalRow.fromSeq(partValues)
}
}
相关信息
相关文章
spark AlreadyExistException 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦