spark DecimalPrecision 源码

  • 2022-10-20
  • 浏览 (218)

spark DecimalPrecision 代码

文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/DecimalPrecision.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.catalyst.analysis

import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.expressions.Literal._
import org.apache.spark.sql.types._


// scalastyle:off
/**
 * Calculates and propagates precision for fixed-precision decimals. Hive has a number of
 * rules for this based on the SQL standard and MS SQL:
 * https://cwiki.apache.org/confluence/download/attachments/27362075/Hive_Decimal_Precision_Scale_Support.pdf
 * https://msdn.microsoft.com/en-us/library/ms190476.aspx
 *
 * In particular, if we have expressions e1 and e2 with precision/scale p1/s2 and p2/s2
 * respectively, then the following operations have the following precision / scale:
 *
 *   Operation    Result Precision                        Result Scale
 *   ------------------------------------------------------------------------
 *   e1 union e2  max(s1, s2) + max(p1-s1, p2-s2)         max(s1, s2)
 *
 * To implement the rules for fixed-precision types, we introduce casts to turn them to unlimited
 * precision, do the math on unlimited-precision numbers, then introduce casts back to the
 * required fixed precision. This allows us to do all rounding and overflow handling in the
 * cast-to-fixed-precision operator.
 *
 * In addition, when mixing non-decimal types with decimals, we use the following rules:
 * - BYTE gets turned into DECIMAL(3, 0)
 * - SHORT gets turned into DECIMAL(5, 0)
 * - INT gets turned into DECIMAL(10, 0)
 * - LONG gets turned into DECIMAL(20, 0)
 * - FLOAT and DOUBLE cause fixed-length decimals to turn into DOUBLE
 * - Literals INT and LONG get turned into DECIMAL with the precision strictly needed by the value
 */
// scalastyle:on
object DecimalPrecision extends TypeCoercionRule {
  import scala.math.max

  private def isFloat(t: DataType): Boolean = t == FloatType || t == DoubleType

  // Returns the wider decimal type that's wider than both of them
  def widerDecimalType(d1: DecimalType, d2: DecimalType): DecimalType = {
    widerDecimalType(d1.precision, d1.scale, d2.precision, d2.scale)
  }
  // max(s1, s2) + max(p1-s1, p2-s2), max(s1, s2)
  def widerDecimalType(p1: Int, s1: Int, p2: Int, s2: Int): DecimalType = {
    val scale = max(s1, s2)
    val range = max(p1 - s1, p2 - s2)
    DecimalType.bounded(range + scale, scale)
  }

  override def transform: PartialFunction[Expression, Expression] = {
    decimalAndDecimal()
      .orElse(integralAndDecimalLiteral)
      .orElse(nondecimalAndDecimal(conf.literalPickMinimumPrecision))
  }

  /** Decimal precision promotion for  binary comparison. */
  private def decimalAndDecimal(): PartialFunction[Expression, Expression] = {
    // Skip nodes whose children have not been resolved yet
    case e if !e.childrenResolved => e

    case b @ BinaryComparison(e1 @ DecimalType.Expression(p1, s1),
    e2 @ DecimalType.Expression(p2, s2)) if p1 != p2 || s1 != s2 =>
      val resultType = widerDecimalType(p1, s1, p2, s2)
      val newE1 = if (e1.dataType == resultType) e1 else Cast(e1, resultType)
      val newE2 = if (e2.dataType == resultType) e2 else Cast(e2, resultType)
      b.makeCopy(Array(newE1, newE2))
  }

  /**
   * Strength reduction for comparing integral expressions with decimal literals.
   * 1. int_col > decimal_literal => int_col > floor(decimal_literal)
   * 2. int_col >= decimal_literal => int_col >= ceil(decimal_literal)
   * 3. int_col < decimal_literal => int_col < ceil(decimal_literal)
   * 4. int_col <= decimal_literal => int_col <= floor(decimal_literal)
   * 5. decimal_literal > int_col => ceil(decimal_literal) > int_col
   * 6. decimal_literal >= int_col => floor(decimal_literal) >= int_col
   * 7. decimal_literal < int_col => floor(decimal_literal) < int_col
   * 8. decimal_literal <= int_col => ceil(decimal_literal) <= int_col
   *
   * Note that technically this is an "optimization" and should go into the optimizer. However,
   * by the time the optimizer runs, these comparison expressions would be pretty hard to pattern
   * match because there are multiple (at least 2) levels of casts involved.
   *
   * There are a lot more possible rules we can implement, but we don't do them
   * because we are not sure how common they are.
   */
  private val integralAndDecimalLiteral: PartialFunction[Expression, Expression] = {

    case GreaterThan(i @ IntegralType(), DecimalLiteral(value)) =>
      if (DecimalLiteral.smallerThanSmallestLong(value)) {
        TrueLiteral
      } else if (DecimalLiteral.largerThanLargestLong(value)) {
        FalseLiteral
      } else {
        GreaterThan(i, Literal(value.floor.toLong))
      }

    case GreaterThanOrEqual(i @ IntegralType(), DecimalLiteral(value)) =>
      if (DecimalLiteral.smallerThanSmallestLong(value)) {
        TrueLiteral
      } else if (DecimalLiteral.largerThanLargestLong(value)) {
        FalseLiteral
      } else {
        GreaterThanOrEqual(i, Literal(value.ceil.toLong))
      }

    case LessThan(i @ IntegralType(), DecimalLiteral(value)) =>
      if (DecimalLiteral.smallerThanSmallestLong(value)) {
        FalseLiteral
      } else if (DecimalLiteral.largerThanLargestLong(value)) {
        TrueLiteral
      } else {
        LessThan(i, Literal(value.ceil.toLong))
      }

    case LessThanOrEqual(i @ IntegralType(), DecimalLiteral(value)) =>
      if (DecimalLiteral.smallerThanSmallestLong(value)) {
        FalseLiteral
      } else if (DecimalLiteral.largerThanLargestLong(value)) {
        TrueLiteral
      } else {
        LessThanOrEqual(i, Literal(value.floor.toLong))
      }

    case GreaterThan(DecimalLiteral(value), i @ IntegralType()) =>
      if (DecimalLiteral.smallerThanSmallestLong(value)) {
        FalseLiteral
      } else if (DecimalLiteral.largerThanLargestLong(value)) {
        TrueLiteral
      } else {
        GreaterThan(Literal(value.ceil.toLong), i)
      }

    case GreaterThanOrEqual(DecimalLiteral(value), i @ IntegralType()) =>
      if (DecimalLiteral.smallerThanSmallestLong(value)) {
        FalseLiteral
      } else if (DecimalLiteral.largerThanLargestLong(value)) {
        TrueLiteral
      } else {
        GreaterThanOrEqual(Literal(value.floor.toLong), i)
      }

    case LessThan(DecimalLiteral(value), i @ IntegralType()) =>
      if (DecimalLiteral.smallerThanSmallestLong(value)) {
        TrueLiteral
      } else if (DecimalLiteral.largerThanLargestLong(value)) {
        FalseLiteral
      } else {
        LessThan(Literal(value.floor.toLong), i)
      }

    case LessThanOrEqual(DecimalLiteral(value), i @ IntegralType()) =>
      if (DecimalLiteral.smallerThanSmallestLong(value)) {
        TrueLiteral
      } else if (DecimalLiteral.largerThanLargestLong(value)) {
        FalseLiteral
      } else {
        LessThanOrEqual(Literal(value.ceil.toLong), i)
      }
  }

  /**
   * Type coercion for BinaryOperator in which one side is a non-decimal numeric, and the other
   * side is a decimal.
   */
  private def nondecimalAndDecimal(literalPickMinimumPrecision: Boolean)
    : PartialFunction[Expression, Expression] = {
    // Promote integers inside a binary expression with fixed-precision decimals to decimals,
    // and fixed-precision decimals in an expression with floats / doubles to doubles
    case b @ BinaryOperator(left, right) if left.dataType != right.dataType =>
      (left, right) match {
        // Promote literal integers inside a binary expression with fixed-precision decimals to
        // decimals. The precision and scale are the ones strictly needed by the integer value.
        // Requiring more precision than necessary may lead to a useless loss of precision.
        // Consider the following example: multiplying a column which is DECIMAL(38, 18) by 2.
        // If we use the default precision and scale for the integer type, 2 is considered a
        // DECIMAL(10, 0). According to the rules, the result would be DECIMAL(38 + 10 + 1, 18),
        // which is out of range and therefore it will become DECIMAL(38, 7), leading to
        // potentially loosing 11 digits of the fractional part. Using only the precision needed
        // by the Literal, instead, the result would be DECIMAL(38 + 1 + 1, 18), which would
        // become DECIMAL(38, 16), safely having a much lower precision loss.
        case (l: Literal, r) if r.dataType.isInstanceOf[DecimalType] &&
            l.dataType.isInstanceOf[IntegralType] &&
            literalPickMinimumPrecision =>
          b.makeCopy(Array(Cast(l, DecimalType.fromLiteral(l)), r))
        case (l, r: Literal) if l.dataType.isInstanceOf[DecimalType] &&
            r.dataType.isInstanceOf[IntegralType] &&
            literalPickMinimumPrecision =>
          b.makeCopy(Array(l, Cast(r, DecimalType.fromLiteral(r))))
        // Promote integers inside a binary expression with fixed-precision decimals to decimals,
        // and fixed-precision decimals in an expression with floats / doubles to doubles
        case (l @ IntegralType(), r @ DecimalType.Expression(_, _)) =>
          b.makeCopy(Array(Cast(l, DecimalType.forType(l.dataType)), r))
        case (l @ DecimalType.Expression(_, _), r @ IntegralType()) =>
          b.makeCopy(Array(l, Cast(r, DecimalType.forType(r.dataType))))
        case (l, r @ DecimalType.Expression(_, _)) if isFloat(l.dataType) =>
          b.makeCopy(Array(l, Cast(r, DoubleType)))
        case (l @ DecimalType.Expression(_, _), r) if isFloat(r.dataType) =>
          b.makeCopy(Array(Cast(l, DoubleType), r))
        case _ => b
      }
  }

}

相关信息

spark 源码目录

相关文章

spark AlreadyExistException 源码

spark Analyzer 源码

spark AnsiTypeCoercion 源码

spark CTESubstitution 源码

spark CannotReplaceMissingTableException 源码

spark CheckAnalysis 源码

spark DeduplicateRelations 源码

spark FunctionRegistry 源码

spark HintErrorLogger 源码

spark KeepLegacyOutputs 源码

0  赞