spark AnsiTypeCoercion 源码

  • 2022-10-20
  • 浏览 (213)

spark AnsiTypeCoercion 代码

文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/AnsiTypeCoercion.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.catalyst.analysis

import org.apache.spark.sql.catalyst.analysis.TypeCoercion.numericPrecedence
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan
import org.apache.spark.sql.catalyst.rules.Rule
import org.apache.spark.sql.types._

/**
 * In Spark ANSI mode, the type coercion rules are based on the type precedence lists of the input
 * data types.
 * As per the section "Type precedence list determination" of "ISO/IEC 9075-2:2011
 * Information technology - Database languages - SQL - Part 2: Foundation (SQL/Foundation)",
 * the type precedence lists of primitive data types are as following:
 *   * Byte: Byte, Short, Int, Long, Decimal, Float, Double
 *   * Short: Short, Int, Long, Decimal, Float, Double
 *   * Int: Int, Long, Decimal, Float, Double
 *   * Long: Long, Decimal, Float, Double
 *   * Decimal: Float, Double, or any wider Numeric type
 *   * Float: Float, Double
 *   * Double: Double
 *   * String: String
 *   * Date: Date, Timestamp
 *   * Timestamp: Timestamp
 *   * Binary: Binary
 *   * Boolean: Boolean
 *   * Interval: Interval
 * As for complex data types, Spark will determine the precedent list recursively based on their
 * sub-types and nullability.
 *
 * With the definition of type precedent list, the general type coercion rules are as following:
 *   * Data type S is allowed to be implicitly cast as type T iff T is in the precedence list of S
 *   * Comparison is allowed iff the data type precedence list of both sides has at least one common
 *     element. When evaluating the comparison, Spark casts both sides as the tightest common data
 *     type of their precedent lists.
 *   * There should be at least one common data type among all the children's precedence lists for
 *     the following operators. The data type of the operator is the tightest common precedent
 *     data type.
 *       * In
 *       * Except
 *       * Intersect
 *       * Greatest
 *       * Least
 *       * Union
 *       * If
 *       * CaseWhen
 *       * CreateArray
 *       * Array Concat
 *       * Sequence
 *       * MapConcat
 *       * CreateMap
 *   * For complex types (struct, array, map), Spark recursively looks into the element type and
 *     applies the rules above.
 *  Note: this new type coercion system will allow implicit converting String type as other
 *  primitive types, in case of breaking too many existing Spark SQL queries. This is a special
 *  rule and it is not from the ANSI SQL standard.
 */
object AnsiTypeCoercion extends TypeCoercionBase {
  override def typeCoercionRules: List[Rule[LogicalPlan]] =
    UnpivotCoercion ::
    WidenSetOperationTypes ::
    new AnsiCombinedTypeCoercionRule(
      InConversion ::
      PromoteStrings ::
      DecimalPrecision ::
      FunctionArgumentConversion ::
      ConcatCoercion ::
      MapZipWithCoercion ::
      EltCoercion ::
      CaseWhenCoercion ::
      IfCoercion ::
      StackCoercion ::
      Division ::
      IntegralDivision ::
      ImplicitTypeCasts ::
      DateTimeOperations ::
      WindowFrameCoercion ::
      GetDateFieldOperations:: Nil) :: Nil

  val findTightestCommonType: (DataType, DataType) => Option[DataType] = {
    case (t1, t2) if t1 == t2 => Some(t1)
    case (NullType, t1) => Some(t1)
    case (t1, NullType) => Some(t1)

    case (t1: IntegralType, t2: DecimalType) if t2.isWiderThan(t1) =>
      Some(t2)
    case (t1: DecimalType, t2: IntegralType) if t1.isWiderThan(t2) =>
      Some(t1)

    case (t1: NumericType, t2: NumericType)
        if !t1.isInstanceOf[DecimalType] && !t2.isInstanceOf[DecimalType] =>
      val index = numericPrecedence.lastIndexWhere(t => t == t1 || t == t2)
      val widerType = numericPrecedence(index)
      if (widerType == FloatType) {
        // If the input type is an Integral type and a Float type, simply return Double type as
        // the tightest common type to avoid potential precision loss on converting the Integral
        // type as Float type.
        Some(DoubleType)
      } else {
        Some(widerType)
      }

    case (d1: DatetimeType, d2: DatetimeType) => Some(findWiderDateTimeType(d1, d2))

    case (t1: DayTimeIntervalType, t2: DayTimeIntervalType) =>
      Some(DayTimeIntervalType(t1.startField.min(t2.startField), t1.endField.max(t2.endField)))
    case (t1: YearMonthIntervalType, t2: YearMonthIntervalType) =>
      Some(YearMonthIntervalType(t1.startField.min(t2.startField), t1.endField.max(t2.endField)))

    case (t1, t2) => findTypeForComplex(t1, t2, findTightestCommonType)
  }

  override def findWiderTypeForTwo(t1: DataType, t2: DataType): Option[DataType] = {
    findTightestCommonType(t1, t2)
      .orElse(findWiderTypeForDecimal(t1, t2))
      .orElse(findWiderTypeForString(t1, t2))
      .orElse(findTypeForComplex(t1, t2, findWiderTypeForTwo))
  }

  /** Promotes StringType to other data types. */
  @scala.annotation.tailrec
  private def findWiderTypeForString(dt1: DataType, dt2: DataType): Option[DataType] = {
    (dt1, dt2) match {
      case (StringType, _: IntegralType) => Some(LongType)
      case (StringType, _: FractionalType) => Some(DoubleType)
      case (StringType, NullType) => Some(StringType)
      // If a binary operation contains interval type and string, we can't decide which
      // interval type the string should be promoted as. There are many possible interval
      // types, such as year interval, month interval, day interval, hour interval, etc.
      case (StringType, _: AnsiIntervalType) => None
      case (StringType, a: AtomicType) => Some(a)
      case (other, StringType) if other != StringType => findWiderTypeForString(StringType, other)
      case _ => None
    }
  }

  override def findWiderCommonType(types: Seq[DataType]): Option[DataType] = {
    types.foldLeft[Option[DataType]](Some(NullType))((r, c) =>
      r match {
        case Some(d) => findWiderTypeForTwo(d, c)
        case _ => None
      })
  }

  override def implicitCast(e: Expression, expectedType: AbstractDataType): Option[Expression] = {
    implicitCast(e.dataType, expectedType).map { dt =>
      if (dt == e.dataType) e else Cast(e, dt)
    }
  }

  /**
   * In Ansi mode, the implicit cast is only allow when `expectedType` is in the type precedent
   * list of `inType`.
   */
  private def implicitCast(
      inType: DataType,
      expectedType: AbstractDataType): Option[DataType] = {
    (inType, expectedType) match {
      // If the expected type equals the input type, no need to cast.
      case _ if expectedType.acceptsType(inType) => Some(inType)

      // If input is a numeric type but not decimal, and we expect a decimal type,
      // cast the input to decimal.
      case (n: NumericType, DecimalType) => Some(DecimalType.forType(n))

      // Cast null type (usually from null literals) into target types
      // By default, the result type is `target.defaultConcreteType`. When the target type is
      // `TypeCollection`, there is another branch to find the "closet convertible data type" below.
      case (NullType, target) if !target.isInstanceOf[TypeCollection] =>
        Some(target.defaultConcreteType)

      // This type coercion system will allow implicit converting String type as other
      // primitive types, in case of breaking too many existing Spark SQL queries.
      case (StringType, a: AtomicType) =>
        Some(a)

      // If the target type is any Numeric type, convert the String type as Double type.
      case (StringType, NumericType) =>
        Some(DoubleType)

      // If the target type is any Decimal type, convert the String type as the default
      // Decimal type.
      case (StringType, DecimalType) =>
        Some(DecimalType.SYSTEM_DEFAULT)

      // If the target type is any timestamp type, convert the String type as the default
      // Timestamp type.
      case (StringType, AnyTimestampType) =>
        Some(AnyTimestampType.defaultConcreteType)

      case (DateType, AnyTimestampType) =>
        Some(AnyTimestampType.defaultConcreteType)

      case (_, target: DataType) =>
        if (Cast.canANSIStoreAssign(inType, target)) {
          Some(target)
        } else {
          None
        }

      // When we reach here, input type is not acceptable for any types in this type collection,
      // try to find the first one we can implicitly cast.
      case (_, TypeCollection(types)) =>
        types.flatMap(implicitCast(inType, _)).headOption

      case _ => None
    }
  }

  override def canCast(from: DataType, to: DataType): Boolean = Cast.canAnsiCast(from, to)

  object PromoteStrings extends TypeCoercionRule {
    private def castExpr(expr: Expression, targetType: DataType): Expression = {
      expr.dataType match {
        case NullType => Literal.create(null, targetType)
        case l if l != targetType => Cast(expr, targetType)
        case _ => expr
      }
    }

    override def transform: PartialFunction[Expression, Expression] = {
      // Skip nodes who's children have not been resolved yet.
      case e if !e.childrenResolved => e

      case b @ BinaryOperator(left, right)
        if findWiderTypeForString(left.dataType, right.dataType).isDefined =>
        val promoteType = findWiderTypeForString(left.dataType, right.dataType).get
        b.withNewChildren(Seq(castExpr(left, promoteType), castExpr(right, promoteType)))

      case Abs(e @ StringType(), failOnError) => Abs(Cast(e, DoubleType), failOnError)
      case m @ UnaryMinus(e @ StringType(), _) => m.withNewChildren(Seq(Cast(e, DoubleType)))
      case UnaryPositive(e @ StringType()) => UnaryPositive(Cast(e, DoubleType))

      case d @ DateAdd(left @ StringType(), _) =>
        d.copy(startDate = Cast(d.startDate, DateType))
      case d @ DateAdd(_, right @ StringType()) =>
        d.copy(days = Cast(right, IntegerType))
      case d @ DateSub(left @ StringType(), _) =>
        d.copy(startDate = Cast(d.startDate, DateType))
      case d @ DateSub(_, right @ StringType()) =>
        d.copy(days = Cast(right, IntegerType))

      case s @ SubtractDates(left @ StringType(), _, _) =>
        s.copy(left = Cast(s.left, DateType))
      case s @ SubtractDates(_, right @ StringType(), _) =>
        s.copy(right = Cast(s.right, DateType))
      case t @ TimeAdd(left @ StringType(), _, _) =>
        t.copy(start = Cast(t.start, TimestampType))
      case t @ SubtractTimestamps(left @ StringType(), _, _, _) =>
        t.copy(left = Cast(t.left, t.right.dataType))
      case t @ SubtractTimestamps(_, right @ StringType(), _, _) =>
        t.copy(right = Cast(right, t.left.dataType))
    }
  }

  /**
   * When getting a date field from a Timestamp column, cast the column as date type.
   *
   * This is Spark's hack to make the implementation simple. In the default type coercion rules,
   * the implicit cast rule does the work. However, The ANSI implicit cast rule doesn't allow
   * converting Timestamp type as Date type, so we need to have this additional rule
   * to make sure the date field extraction from Timestamp columns works.
   */
  object GetDateFieldOperations extends TypeCoercionRule {
    override def transform: PartialFunction[Expression, Expression] = {
      // Skip nodes who's children have not been resolved yet.
      case g if !g.childrenResolved => g

      case g: GetDateField if AnyTimestampType.unapply(g.child) =>
        g.withNewChildren(Seq(Cast(g.child, DateType)))
    }
  }

  object DateTimeOperations extends TypeCoercionRule {
    override val transform: PartialFunction[Expression, Expression] = {
      // Skip nodes who's children have not been resolved yet.
      case e if !e.childrenResolved => e

      case d @ DateAdd(AnyTimestampType(), _) => d.copy(startDate = Cast(d.startDate, DateType))
      case d @ DateSub(AnyTimestampType(), _) => d.copy(startDate = Cast(d.startDate, DateType))

      case s @ SubtractTimestamps(DateType(), AnyTimestampType(), _, _) =>
        s.copy(left = Cast(s.left, s.right.dataType))
      case s @ SubtractTimestamps(AnyTimestampType(), DateType(), _, _) =>
        s.copy(right = Cast(s.right, s.left.dataType))
      case s @ SubtractTimestamps(AnyTimestampType(), AnyTimestampType(), _, _)
        if s.left.dataType != s.right.dataType =>
        val newLeft = castIfNotSameType(s.left, TimestampNTZType)
        val newRight = castIfNotSameType(s.right, TimestampNTZType)
        s.copy(left = newLeft, right = newRight)
    }
  }

  // This is for generating a new rule id, so that we can run both default and Ansi
  // type coercion rules against one logical plan.
  class AnsiCombinedTypeCoercionRule(rules: Seq[TypeCoercionRule]) extends
    CombinedTypeCoercionRule(rules)
}

相关信息

spark 源码目录

相关文章

spark AlreadyExistException 源码

spark Analyzer 源码

spark CTESubstitution 源码

spark CannotReplaceMissingTableException 源码

spark CheckAnalysis 源码

spark DecimalPrecision 源码

spark DeduplicateRelations 源码

spark FunctionRegistry 源码

spark HintErrorLogger 源码

spark KeepLegacyOutputs 源码

0  赞