spark package-info 源码

  • 2022-10-20
  • 浏览 (218)

spark package-info 代码

文件路径:/mllib/src/main/scala/org/apache/spark/ml/feature/package-info.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


/**
 * Feature transformers
 *
 * The `ml.feature` package provides common feature transformers that help convert raw data or
 * features into more suitable forms for model fitting.
 * Most feature transformers are implemented as {@link org.apache.spark.ml.Transformer}s, which
 * transforms one {@link org.apache.spark.sql.Dataset} into another, e.g.,
 * {@link org.apache.spark.ml.feature.HashingTF}.
 * Some feature transformers are implemented as {@link org.apache.spark.ml.Estimator}}s, because the
 * transformation requires some aggregated information of the dataset, e.g., document
 * frequencies in {@link org.apache.spark.ml.feature.IDF}.
 * For those feature transformers, calling {@link org.apache.spark.ml.Estimator#fit} is required to
 * obtain the model first, e.g., {@link org.apache.spark.ml.feature.IDFModel}, in order to apply
 * transformation.
 * The transformation is usually done by appending new columns to the input
 * {@link org.apache.spark.sql.Dataset}, so all input columns are carried over.
 *
 * We try to make each transformer minimal, so it becomes flexible to assemble feature
 * transformation pipelines.
 * {@link org.apache.spark.ml.Pipeline} can be used to chain feature transformers, and
 * {@link org.apache.spark.ml.feature.VectorAssembler} can be used to combine multiple feature
 * transformations, for example:
 *
 * <pre>
 * <code>
 *   import java.util.Arrays;
 *
 *   import org.apache.spark.api.java.JavaRDD;
 *   import static org.apache.spark.sql.types.DataTypes.*;
 *   import org.apache.spark.sql.types.StructType;
 *   import org.apache.spark.sql.Dataset;
 *   import org.apache.spark.sql.RowFactory;
 *   import org.apache.spark.sql.Row;
 *
 *   import org.apache.spark.ml.feature.*;
 *   import org.apache.spark.ml.Pipeline;
 *   import org.apache.spark.ml.PipelineStage;
 *   import org.apache.spark.ml.PipelineModel;
 *
 *  // a DataFrame with three columns: id (integer), text (string), and rating (double).
 *  StructType schema = createStructType(
 *    Arrays.asList(
 *      createStructField("id", IntegerType, false),
 *      createStructField("text", StringType, false),
 *      createStructField("rating", DoubleType, false)));
 *  JavaRDD&lt;Row&gt; rowRDD = jsc.parallelize(
 *    Arrays.asList(
 *      RowFactory.create(0, "Hi I heard about Spark", 3.0),
 *      RowFactory.create(1, "I wish Java could use case classes", 4.0),
 *      RowFactory.create(2, "Logistic regression models are neat", 4.0)));
 *  Dataset&lt;Row&gt; dataset = jsql.createDataFrame(rowRDD, schema);
 *  // define feature transformers
 *  RegexTokenizer tok = new RegexTokenizer()
 *    .setInputCol("text")
 *    .setOutputCol("words");
 *  StopWordsRemover sw = new StopWordsRemover()
 *    .setInputCol("words")
 *    .setOutputCol("filtered_words");
 *  HashingTF tf = new HashingTF()
 *    .setInputCol("filtered_words")
 *    .setOutputCol("tf")
 *    .setNumFeatures(10000);
 *  IDF idf = new IDF()
 *    .setInputCol("tf")
 *    .setOutputCol("tf_idf");
 *  VectorAssembler assembler = new VectorAssembler()
 *    .setInputCols(new String[] {"tf_idf", "rating"})
 *    .setOutputCol("features");
 *
 *  // assemble and fit the feature transformation pipeline
 *  Pipeline pipeline = new Pipeline()
 *    .setStages(new PipelineStage[] {tok, sw, tf, idf, assembler});
 *  PipelineModel model = pipeline.fit(dataset);
 *
 *  // save transformed features with raw data
 *  model.transform(dataset)
 *    .select("id", "text", "rating", "features")
 *    .write().format("parquet").save("/output/path");
 * </code>
 * </pre>
 *
 * Some feature transformers implemented in MLlib are inspired by those implemented in scikit-learn.
 * The major difference is that most scikit-learn feature transformers operate eagerly on the entire
 * input dataset, while MLlib's feature transformers operate lazily on individual columns,
 * which is more efficient and flexible to handle large and complex datasets.
 *
 * @see <a href="http://scikit-learn.org/stable/modules/preprocessing.html" target="_blank">
 * scikit-learn.preprocessing</a>
 */
package org.apache.spark.ml.feature;

相关信息

spark 源码目录

相关文章

spark Binarizer 源码

spark BucketedRandomProjectionLSH 源码

spark Bucketizer 源码

spark ChiSqSelector 源码

spark CountVectorizer 源码

spark DCT 源码

spark ElementwiseProduct 源码

spark FeatureHasher 源码

spark HashingTF 源码

spark IDF 源码

0  赞