spark StarSchemaDetection 源码

  • 2022-10-20
  • 浏览 (194)

spark StarSchemaDetection 代码

文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/StarSchemaDetection.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.catalyst.optimizer

import scala.annotation.tailrec

import org.apache.spark.sql.catalyst.SQLConfHelper
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.planning.{NodeWithOnlyDeterministicProjectAndFilter, PhysicalOperation}
import org.apache.spark.sql.catalyst.plans._
import org.apache.spark.sql.catalyst.plans.logical._

/**
 * Encapsulates star-schema detection logic.
 */
object StarSchemaDetection extends PredicateHelper with SQLConfHelper {

  /**
   * Star schema consists of one or more fact tables referencing a number of dimension
   * tables. In general, star-schema joins are detected using the following conditions:
   *  1. Informational RI constraints (reliable detection)
   * + Dimension contains a primary key that is being joined to the fact table.
   * + Fact table contains foreign keys referencing multiple dimension tables.
   * 2. Cardinality based heuristics
   * + Usually, the table with the highest cardinality is the fact table.
   * + Table being joined with the most number of tables is the fact table.
   *
   * To detect star joins, the algorithm uses a combination of the above two conditions.
   * The fact table is chosen based on the cardinality heuristics, and the dimension
   * tables are chosen based on the RI constraints. A star join will consist of the largest
   * fact table joined with the dimension tables on their primary keys. To detect that a
   * column is a primary key, the algorithm uses table and column statistics.
   *
   * The algorithm currently returns only the star join with the largest fact table.
   * Choosing the largest fact table on the driving arm to avoid large inners is in
   * general a good heuristic. This restriction will be lifted to observe multiple
   * star joins.
   *
   * The highlights of the algorithm are the following:
   *
   * Given a set of joined tables/plans, the algorithm first verifies if they are eligible
   * for star join detection. An eligible plan is a base table access with valid statistics.
   * A base table access represents Project or Filter operators above a LeafNode. Conservatively,
   * the algorithm only considers base table access as part of a star join since they provide
   * reliable statistics. This restriction can be lifted with the CBO enablement by default.
   *
   * If some of the plans are not base table access, or statistics are not available, the algorithm
   * returns an empty star join plan since, in the absence of statistics, it cannot make
   * good planning decisions. Otherwise, the algorithm finds the table with the largest cardinality
   * (number of rows), which is assumed to be a fact table.
   *
   * Next, it computes the set of dimension tables for the current fact table. A dimension table
   * is assumed to be in a RI relationship with a fact table. To infer column uniqueness,
   * the algorithm compares the number of distinct values with the total number of rows in the
   * table. If their relative difference is within certain limits (i.e. ndvMaxError * 2, adjusted
   * based on 1TB TPC-DS data), the column is assumed to be unique.
   */
  def findStarJoins(
      input: Seq[LogicalPlan],
      conditions: Seq[Expression]): Seq[LogicalPlan] = {

    val emptyStarJoinPlan = Seq.empty[LogicalPlan]

    if (input.size < 2) {
      emptyStarJoinPlan
    } else {
      // Find if the input plans are eligible for star join detection.
      // An eligible plan is a base table access with valid statistics.
      val foundEligibleJoin = input.forall {
        case NodeWithOnlyDeterministicProjectAndFilter(t: LeafNode)
            if t.stats.rowCount.isDefined => true
        case _ => false
      }

      if (!foundEligibleJoin) {
        // Some plans don't have stats or are complex plans. Conservatively,
        // return an empty star join. This restriction can be lifted
        // once statistics are propagated in the plan.
        emptyStarJoinPlan
      } else {
        // Find the fact table using cardinality based heuristics i.e.
        // the table with the largest number of rows.
        val sortedFactTables = input.map { plan =>
          TableAccessCardinality(plan, getTableAccessCardinality(plan))
        }.collect { case t @ TableAccessCardinality(_, Some(_)) =>
          t
        }.sortBy(_.size)(implicitly[Ordering[Option[BigInt]]].reverse)

        sortedFactTables match {
          case Nil =>
            emptyStarJoinPlan
          case table1 :: table2 :: _
            if table2.size.get.toDouble > conf.starSchemaFTRatio * table1.size.get.toDouble =>
            // If the top largest tables have comparable number of rows, return an empty star plan.
            // This restriction will be lifted when the algorithm is generalized
            // to return multiple star plans.
            emptyStarJoinPlan
          case TableAccessCardinality(factTable, _) :: rest =>
            // Find the fact table joins.
            val allFactJoins = rest.collect { case TableAccessCardinality(plan, _)
              if findJoinConditions(factTable, plan, conditions).nonEmpty =>
              plan
            }

            // Find the corresponding join conditions.
            val allFactJoinCond = allFactJoins.flatMap { plan =>
              val joinCond = findJoinConditions(factTable, plan, conditions)
              joinCond
            }

            // Verify if the join columns have valid statistics.
            // Allow any relational comparison between the tables. Later
            // we will heuristically choose a subset of equi-join
            // tables.
            val areStatsAvailable = allFactJoins.forall { dimTable =>
              allFactJoinCond.exists {
                case BinaryComparison(lhs: AttributeReference, rhs: AttributeReference) =>
                  val dimCol = if (dimTable.outputSet.contains(lhs)) lhs else rhs
                  val factCol = if (factTable.outputSet.contains(lhs)) lhs else rhs
                  hasStatistics(dimCol, dimTable) && hasStatistics(factCol, factTable)
                case _ => false
              }
            }

            if (!areStatsAvailable) {
              emptyStarJoinPlan
            } else {
              // Find the subset of dimension tables. A dimension table is assumed to be in a
              // RI relationship with the fact table. Only consider equi-joins
              // between a fact and a dimension table to avoid expanding joins.
              val eligibleDimPlans = allFactJoins.filter { dimTable =>
                allFactJoinCond.exists {
                  case cond @ Equality(lhs: AttributeReference, rhs: AttributeReference) =>
                    val dimCol = if (dimTable.outputSet.contains(lhs)) lhs else rhs
                    isUnique(dimCol, dimTable)
                  case _ => false
                }
              }

              if (eligibleDimPlans.isEmpty || eligibleDimPlans.size < 2) {
                // An eligible star join was not found since the join is not
                // an RI join, or the star join is an expanding join.
                // Also, a star would involve more than one dimension table.
                emptyStarJoinPlan
              } else {
                factTable +: eligibleDimPlans
              }
            }
        }
      }
    }
  }

  /**
   * Determines if a column referenced by a base table access is a primary key.
   * A column is a PK if it is not nullable and has unique values.
   * To determine if a column has unique values in the absence of informational
   * RI constraints, the number of distinct values is compared to the total
   * number of rows in the table. If their relative difference
   * is within the expected limits (i.e. 2 * spark.sql.statistics.ndv.maxError based
   * on TPC-DS data results), the column is assumed to have unique values.
   */
  private def isUnique(
      column: Attribute,
      plan: LogicalPlan): Boolean = plan match {
    case NodeWithOnlyDeterministicProjectAndFilter(t: LeafNode) =>
      val leafCol = findLeafNodeCol(column, plan)
      leafCol match {
        case Some(col) if t.outputSet.contains(col) =>
          val stats = t.stats
          stats.rowCount match {
            case Some(rowCount) if rowCount >= 0 =>
              if (stats.attributeStats.nonEmpty && stats.attributeStats.contains(col)) {
                val colStats = stats.attributeStats.get(col).get
                if (!colStats.hasCountStats || colStats.nullCount.get > 0) {
                  false
                } else {
                  val distinctCount = colStats.distinctCount.get
                  val relDiff = math.abs((distinctCount.toDouble / rowCount.toDouble) - 1.0d)
                  // ndvMaxErr adjusted based on TPCDS 1TB data results
                  relDiff <= conf.ndvMaxError * 2
                }
              } else {
                false
              }
            case _ => false
          }
        case _ => false
      }
    case _ => false
  }

  /**
   * Given a column over a base table access, it returns
   * the leaf node column from which the input column is derived.
   */
  @tailrec
  private def findLeafNodeCol(
      column: Attribute,
      plan: LogicalPlan): Option[Attribute] = plan match {
    case pl @ NodeWithOnlyDeterministicProjectAndFilter(_: LeafNode) =>
      pl match {
        case t: LeafNode if t.outputSet.contains(column) =>
          Option(column)
        case p: Project if p.outputSet.exists(_.semanticEquals(column)) =>
          val col = p.outputSet.find(_.semanticEquals(column)).get
          findLeafNodeCol(col, p.child)
        case f: Filter =>
          findLeafNodeCol(column, f.child)
        case _ => None
      }
    case _ => None
  }

  /**
   * Checks if a column has statistics.
   * The column is assumed to be over a base table access.
   */
  private def hasStatistics(
      column: Attribute,
      plan: LogicalPlan): Boolean = plan match {
    case NodeWithOnlyDeterministicProjectAndFilter(t: LeafNode) =>
      val leafCol = findLeafNodeCol(column, plan)
      leafCol match {
        case Some(col) if t.outputSet.contains(col) =>
          val stats = t.stats
          stats.attributeStats.nonEmpty && stats.attributeStats.contains(col)
        case _ => false
      }
    case _ => false
  }

  /**
   * Returns the join predicates between two input plans. It only
   * considers basic comparison operators.
   */
  @inline
  private def findJoinConditions(
      plan1: LogicalPlan,
      plan2: LogicalPlan,
      conditions: Seq[Expression]): Seq[Expression] = {
    val refs = plan1.outputSet ++ plan2.outputSet
    conditions.filter {
      case BinaryComparison(_, _) => true
      case _ => false
    }.filterNot(canEvaluate(_, plan1))
      .filterNot(canEvaluate(_, plan2))
      .filter(_.references.subsetOf(refs))
  }

  /**
   * Checks if a star join is a selective join. A star join is assumed
   * to be selective if there are local predicates on the dimension
   * tables.
   */
  private def isSelectiveStarJoin(
      dimTables: Seq[LogicalPlan],
      conditions: Seq[Expression]): Boolean = dimTables.exists {
    case plan @ PhysicalOperation(_, p, _: LeafNode) =>
      // Checks if any condition applies to the dimension tables.
      // Exclude the IsNotNull predicates until predicate selectivity is available.
      // In most cases, this predicate is artificially introduced by the Optimizer
      // to enforce nullability constraints.
      val localPredicates = conditions.filterNot(_.isInstanceOf[IsNotNull])
        .exists(canEvaluate(_, plan))

      // Checks if there are any predicates pushed down to the base table access.
      val pushedDownPredicates = p.nonEmpty && !p.forall(_.isInstanceOf[IsNotNull])

      localPredicates || pushedDownPredicates
    case _ => false
  }

  /**
   * Helper case class to hold (plan, rowCount) pairs.
   */
  private case class TableAccessCardinality(plan: LogicalPlan, size: Option[BigInt])

  /**
   * Returns the cardinality of a base table access. A base table access represents
   * a LeafNode, or Project or Filter operators above a LeafNode.
   */
  private def getTableAccessCardinality(
      input: LogicalPlan): Option[BigInt] = input match {
    case NodeWithOnlyDeterministicProjectAndFilter(t: LeafNode) if t.stats.rowCount.isDefined =>
      if (conf.cboEnabled && input.stats.rowCount.isDefined) {
        Option(input.stats.rowCount.get)
      } else {
        Option(t.stats.rowCount.get)
      }
    case _ => None
  }

  /**
   * Reorders a star join based on heuristics. It is called from ReorderJoin if CBO is disabled.
   *   1) Finds the star join with the largest fact table.
   *   2) Places the fact table the driving arm of the left-deep tree.
   *     This plan avoids large table access on the inner, and thus favor hash joins.
   *   3) Applies the most selective dimensions early in the plan to reduce the amount of
   *      data flow.
   */
  def reorderStarJoins(
      input: Seq[(LogicalPlan, InnerLike)],
      conditions: Seq[Expression]): Seq[(LogicalPlan, InnerLike)] = {
    assert(input.size >= 2)

    val emptyStarJoinPlan = Seq.empty[(LogicalPlan, InnerLike)]

    // Find the eligible star plans. Currently, it only returns
    // the star join with the largest fact table.
    val eligibleJoins = input.collect{ case (plan, Inner) => plan }
    val starPlan = findStarJoins(eligibleJoins, conditions)

    if (starPlan.isEmpty) {
      emptyStarJoinPlan
    } else {
      val (factTable, dimTables) = (starPlan.head, starPlan.tail)

      // Only consider selective joins. This case is detected by observing local predicates
      // on the dimension tables. In a star schema relationship, the join between the fact and the
      // dimension table is a FK-PK join. Heuristically, a selective dimension may reduce
      // the result of a join.
      if (isSelectiveStarJoin(dimTables, conditions)) {
        val reorderDimTables = dimTables.map { plan =>
          TableAccessCardinality(plan, getTableAccessCardinality(plan))
        }.sortBy(_.size).map {
          case TableAccessCardinality(p1, _) => p1
        }

        val reorderStarPlan = factTable +: reorderDimTables
        reorderStarPlan.map(plan => (plan, Inner))
      } else {
        emptyStarJoinPlan
      }
    }
  }
}

相关信息

spark 源码目录

相关文章

spark ComplexTypes 源码

spark CostBasedJoinReorder 源码

spark DecorrelateInnerQuery 源码

spark EliminateResolvedHint 源码

spark InjectRuntimeFilter 源码

spark InlineCTE 源码

spark LimitPushDownThroughWindow 源码

spark MergeScalarSubqueries 源码

spark NestedColumnAliasing 源码

spark NormalizeFloatingNumbers 源码

0  赞