spark OptimizeMetadataOnlyDeleteFromTable 源码

  • 2022-10-20
  • 浏览 (97)

spark OptimizeMetadataOnlyDeleteFromTable 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/v2/OptimizeMetadataOnlyDeleteFromTable.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.datasources.v2

import org.apache.spark.sql.catalyst.expressions.{Expression, PredicateHelper, SubqueryExpression}
import org.apache.spark.sql.catalyst.expressions.Literal.TrueLiteral
import org.apache.spark.sql.catalyst.plans.logical.{DeleteFromTable, DeleteFromTableWithFilters, LogicalPlan, ReplaceData, RowLevelWrite}
import org.apache.spark.sql.catalyst.rules.Rule
import org.apache.spark.sql.connector.catalog.{SupportsDeleteV2, TruncatableTable}
import org.apache.spark.sql.connector.expressions.filter.Predicate
import org.apache.spark.sql.connector.write.RowLevelOperation
import org.apache.spark.sql.connector.write.RowLevelOperation.Command.DELETE
import org.apache.spark.sql.execution.datasources.DataSourceStrategy

/**
 * A rule that replaces a rewritten DELETE operation with a delete using filters if the data source
 * can handle this DELETE command without executing the plan that operates on individual or groups
 * of rows.
 *
 * Note this rule must be run after expression optimization but before scan planning.
 */
object OptimizeMetadataOnlyDeleteFromTable extends Rule[LogicalPlan] with PredicateHelper {

  override def apply(plan: LogicalPlan): LogicalPlan = plan transform {
    case RewrittenRowLevelCommand(rowLevelPlan, DELETE, cond, relation: DataSourceV2Relation) =>
      relation.table match {
        case table: SupportsDeleteV2 if !SubqueryExpression.hasSubquery(cond) =>
          val predicates = splitConjunctivePredicates(cond)
          val normalizedPredicates = DataSourceStrategy.normalizeExprs(predicates, relation.output)
          val filters = toDataSourceV2Filters(normalizedPredicates)
          val allPredicatesTranslated = normalizedPredicates.size == filters.length
          if (allPredicatesTranslated && table.canDeleteWhere(filters)) {
            logDebug(s"Switching to delete with filters: ${filters.mkString("[", ", ", "]")}")
            DeleteFromTableWithFilters(relation, filters)
          } else {
            rowLevelPlan
          }

        case _: TruncatableTable if cond == TrueLiteral =>
          DeleteFromTable(relation, cond)

        case _ =>
          rowLevelPlan
      }
  }

  private def toDataSourceV2Filters(predicates: Seq[Expression]): Array[Predicate] = {
    predicates.flatMap { p =>
      val filter = DataSourceV2Strategy.translateFilterV2(p)
      if (filter.isEmpty) {
        logDebug(s"Cannot translate expression to data source filter: $p")
      }
      filter
    }.toArray
  }

  private object RewrittenRowLevelCommand {
    type ReturnType = (RowLevelWrite, RowLevelOperation.Command, Expression, LogicalPlan)

    def unapply(plan: LogicalPlan): Option[ReturnType] = plan match {
      case rd @ ReplaceData(_, cond, _, originalTable, _) =>
        val command = rd.operation.command
        Some(rd, command, cond, originalTable)

      case _ =>
        None
    }
  }
}

相关信息

spark 源码目录

相关文章

spark AddPartitionExec 源码

spark AlterNamespaceSetPropertiesExec 源码

spark AlterTableExec 源码

spark BatchScanExec 源码

spark CacheTableExec 源码

spark ContinuousScanExec 源码

spark CreateIndexExec 源码

spark CreateNamespaceExec 源码

spark CreateTableExec 源码

spark DataSourceRDD 源码

0  赞