spark DataSourceRDD 源码

  • 2022-10-20
  • 浏览 (249)

spark DataSourceRDD 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/v2/DataSourceRDD.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.datasources.v2

import scala.language.existentials

import org.apache.spark._
import org.apache.spark.deploy.SparkHadoopUtil
import org.apache.spark.internal.Logging
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.connector.read.{InputPartition, PartitionReader, PartitionReaderFactory}
import org.apache.spark.sql.errors.QueryExecutionErrors
import org.apache.spark.sql.execution.metric.{CustomMetrics, SQLMetric}
import org.apache.spark.sql.vectorized.ColumnarBatch

class DataSourceRDDPartition(val index: Int, val inputPartitions: Seq[InputPartition])
  extends Partition with Serializable

// TODO: we should have 2 RDDs: an RDD[InternalRow] for row-based scan, an `RDD[ColumnarBatch]` for
// columnar scan.
class DataSourceRDD(
    sc: SparkContext,
    @transient private val inputPartitions: Seq[Seq[InputPartition]],
    partitionReaderFactory: PartitionReaderFactory,
    columnarReads: Boolean,
    customMetrics: Map[String, SQLMetric])
  extends RDD[InternalRow](sc, Nil) {

  override protected def getPartitions: Array[Partition] = {
    inputPartitions.zipWithIndex.map {
      case (inputPartitions, index) => new DataSourceRDDPartition(index, inputPartitions)
    }.toArray
  }

  private def castPartition(split: Partition): DataSourceRDDPartition = split match {
    case p: DataSourceRDDPartition => p
    case _ => throw QueryExecutionErrors.notADatasourceRDDPartitionError(split)
  }

  override def compute(split: Partition, context: TaskContext): Iterator[InternalRow] = {

    val iterator = new Iterator[Object] {
      private val inputPartitions = castPartition(split).inputPartitions
      private var currentIter: Option[Iterator[Object]] = None
      private var currentIndex: Int = 0

      override def hasNext: Boolean = currentIter.exists(_.hasNext) || advanceToNextIter()

      override def next(): Object = {
        if (!hasNext) throw new NoSuchElementException("No more elements")
        currentIter.get.next()
      }

      private def advanceToNextIter(): Boolean = {
        if (currentIndex >= inputPartitions.length) {
          false
        } else {
          val inputPartition = inputPartitions(currentIndex)
          currentIndex += 1

          // TODO: SPARK-25083 remove the type erasure hack in data source scan
          val (iter, reader) = if (columnarReads) {
            val batchReader = partitionReaderFactory.createColumnarReader(inputPartition)
            val iter = new MetricsBatchIterator(
              new PartitionIterator[ColumnarBatch](batchReader, customMetrics))
            (iter, batchReader)
          } else {
            val rowReader = partitionReaderFactory.createReader(inputPartition)
            val iter = new MetricsRowIterator(
              new PartitionIterator[InternalRow](rowReader, customMetrics))
            (iter, rowReader)
          }
          context.addTaskCompletionListener[Unit] { _ =>
            // In case of early stopping before consuming the entire iterator,
            // we need to do one more metric update at the end of the task.
            CustomMetrics.updateMetrics(reader.currentMetricsValues, customMetrics)
            iter.forceUpdateMetrics()
            reader.close()
          }
          currentIter = Some(iter)
          hasNext
        }
      }
    }

    new InterruptibleIterator(context, iterator).asInstanceOf[Iterator[InternalRow]]
  }

  override def getPreferredLocations(split: Partition): Seq[String] = {
    castPartition(split).inputPartitions.flatMap(_.preferredLocations())
  }
}

private class PartitionIterator[T](
    reader: PartitionReader[T],
    customMetrics: Map[String, SQLMetric]) extends Iterator[T] {
  private[this] var valuePrepared = false
  private[this] var hasMoreInput = true

  private var numRow = 0L

  override def hasNext: Boolean = {
    if (!valuePrepared && hasMoreInput) {
      hasMoreInput = reader.next()
      valuePrepared = hasMoreInput
    }
    valuePrepared
  }

  override def next(): T = {
    if (!hasNext) {
      throw QueryExecutionErrors.endOfStreamError()
    }
    if (numRow % CustomMetrics.NUM_ROWS_PER_UPDATE == 0) {
      CustomMetrics.updateMetrics(reader.currentMetricsValues, customMetrics)
    }
    numRow += 1
    valuePrepared = false
    reader.get()
  }
}

private class MetricsHandler extends Logging with Serializable {
  private val inputMetrics = TaskContext.get().taskMetrics().inputMetrics
  private val startingBytesRead = inputMetrics.bytesRead
  private val getBytesRead = SparkHadoopUtil.get.getFSBytesReadOnThreadCallback()

  def updateMetrics(numRows: Int, force: Boolean = false): Unit = {
    inputMetrics.incRecordsRead(numRows)
    val shouldUpdateBytesRead =
      inputMetrics.recordsRead % SparkHadoopUtil.UPDATE_INPUT_METRICS_INTERVAL_RECORDS == 0
    if (shouldUpdateBytesRead || force) {
      inputMetrics.setBytesRead(startingBytesRead + getBytesRead())
    }
  }
}

private abstract class MetricsIterator[I](iter: Iterator[I]) extends Iterator[I] {
  protected val metricsHandler = new MetricsHandler

  override def hasNext: Boolean = {
    if (iter.hasNext) {
      true
    } else {
      forceUpdateMetrics()
      false
    }
  }

  def forceUpdateMetrics(): Unit = metricsHandler.updateMetrics(0, force = true)
}

private class MetricsRowIterator(
    iter: Iterator[InternalRow]) extends MetricsIterator[InternalRow](iter) {
  override def next(): InternalRow = {
    val item = iter.next
    metricsHandler.updateMetrics(1)
    item
  }
}

private class MetricsBatchIterator(
    iter: Iterator[ColumnarBatch]) extends MetricsIterator[ColumnarBatch](iter) {
  override def next(): ColumnarBatch = {
    val batch: ColumnarBatch = iter.next
    metricsHandler.updateMetrics(batch.numRows)
    batch
  }
}

相关信息

spark 源码目录

相关文章

spark AddPartitionExec 源码

spark AlterNamespaceSetPropertiesExec 源码

spark AlterTableExec 源码

spark BatchScanExec 源码

spark CacheTableExec 源码

spark ContinuousScanExec 源码

spark CreateIndexExec 源码

spark CreateNamespaceExec 源码

spark CreateTableExec 源码

spark DataSourceV2ScanExecBase 源码

0  赞