kafka KStreamAggregate 源码
kafka KStreamAggregate 代码
文件路径:/streams/src/main/java/org/apache/kafka/streams/kstream/internals/KStreamAggregate.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.kafka.streams.kstream.internals;
import org.apache.kafka.common.metrics.Sensor;
import org.apache.kafka.streams.kstream.Aggregator;
import org.apache.kafka.streams.kstream.Initializer;
import org.apache.kafka.streams.processor.api.ContextualProcessor;
import org.apache.kafka.streams.processor.api.Processor;
import org.apache.kafka.streams.processor.api.ProcessorContext;
import org.apache.kafka.streams.processor.api.Record;
import org.apache.kafka.streams.processor.api.RecordMetadata;
import org.apache.kafka.streams.processor.internals.metrics.StreamsMetricsImpl;
import org.apache.kafka.streams.state.TimestampedKeyValueStore;
import org.apache.kafka.streams.state.ValueAndTimestamp;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import static org.apache.kafka.streams.processor.internals.metrics.TaskMetrics.droppedRecordsSensor;
import static org.apache.kafka.streams.state.ValueAndTimestamp.getValueOrNull;
public class KStreamAggregate<KIn, VIn, VAgg> implements KStreamAggProcessorSupplier<KIn, VIn, KIn, VAgg> {
private static final Logger LOG = LoggerFactory.getLogger(KStreamAggregate.class);
private final String storeName;
private final Initializer<VAgg> initializer;
private final Aggregator<? super KIn, ? super VIn, VAgg> aggregator;
private boolean sendOldValues = false;
KStreamAggregate(final String storeName,
final Initializer<VAgg> initializer,
final Aggregator<? super KIn, ? super VIn, VAgg> aggregator) {
this.storeName = storeName;
this.initializer = initializer;
this.aggregator = aggregator;
}
@Override
public Processor<KIn, VIn, KIn, Change<VAgg>> get() {
return new KStreamAggregateProcessor();
}
@Override
public void enableSendingOldValues() {
sendOldValues = true;
}
private class KStreamAggregateProcessor extends ContextualProcessor<KIn, VIn, KIn, Change<VAgg>> {
private TimestampedKeyValueStore<KIn, VAgg> store;
private Sensor droppedRecordsSensor;
private TimestampedTupleForwarder<KIn, VAgg> tupleForwarder;
@Override
public void init(final ProcessorContext<KIn, Change<VAgg>> context) {
super.init(context);
droppedRecordsSensor = droppedRecordsSensor(
Thread.currentThread().getName(),
context.taskId().toString(),
(StreamsMetricsImpl) context.metrics());
store = context.getStateStore(storeName);
tupleForwarder = new TimestampedTupleForwarder<>(
store,
context,
new TimestampedCacheFlushListener<>(context),
sendOldValues);
}
@Override
public void process(final Record<KIn, VIn> record) {
// If the key or value is null we don't need to proceed
if (record.key() == null || record.value() == null) {
if (context().recordMetadata().isPresent()) {
final RecordMetadata recordMetadata = context().recordMetadata().get();
LOG.warn(
"Skipping record due to null key or value. "
+ "topic=[{}] partition=[{}] offset=[{}]",
recordMetadata.topic(), recordMetadata.partition(), recordMetadata.offset()
);
} else {
LOG.warn(
"Skipping record due to null key or value. Topic, partition, and offset not known."
);
}
droppedRecordsSensor.record();
return;
}
final ValueAndTimestamp<VAgg> oldAggAndTimestamp = store.get(record.key());
VAgg oldAgg = getValueOrNull(oldAggAndTimestamp);
final VAgg newAgg;
final long newTimestamp;
if (oldAgg == null) {
oldAgg = initializer.apply();
newTimestamp = record.timestamp();
} else {
oldAgg = oldAggAndTimestamp.value();
newTimestamp = Math.max(record.timestamp(), oldAggAndTimestamp.timestamp());
}
newAgg = aggregator.apply(record.key(), record.value(), oldAgg);
store.put(record.key(), ValueAndTimestamp.make(newAgg, newTimestamp));
tupleForwarder.maybeForward(
record.withValue(new Change<>(newAgg, sendOldValues ? oldAgg : null))
.withTimestamp(newTimestamp));
}
}
@Override
public KTableValueGetterSupplier<KIn, VAgg> view() {
return new KTableValueGetterSupplier<KIn, VAgg>() {
public KTableValueGetter<KIn, VAgg> get() {
return new KStreamAggregateValueGetter();
}
@Override
public String[] storeNames() {
return new String[]{storeName};
}
};
}
private class KStreamAggregateValueGetter implements KTableValueGetter<KIn, VAgg> {
private TimestampedKeyValueStore<KIn, VAgg> store;
@Override
public void init(final ProcessorContext<?, ?> context) {
store = context.getStateStore(storeName);
}
@Override
public ValueAndTimestamp<VAgg> get(final KIn key) {
return store.get(key);
}
}
}
相关信息
相关文章
kafka AbstractKStreamTimeWindowAggregateProcessor 源码
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦