kafka CogroupedStreamAggregateBuilder 源码

  • 2022-10-20
  • 浏览 (240)

kafka CogroupedStreamAggregateBuilder 代码

文件路径:/streams/src/main/java/org/apache/kafka/streams/kstream/internals/CogroupedStreamAggregateBuilder.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.kafka.streams.kstream.internals;

import static org.apache.kafka.streams.kstream.internals.graph.OptimizableRepartitionNode.optimizableRepartitionNodeBuilder;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.LinkedHashMap;
import java.util.Map;
import java.util.Map.Entry;
import org.apache.kafka.common.serialization.Serde;
import org.apache.kafka.streams.kstream.Aggregator;
import org.apache.kafka.streams.kstream.EmitStrategy;
import org.apache.kafka.streams.kstream.Initializer;
import org.apache.kafka.streams.kstream.KTable;
import org.apache.kafka.streams.kstream.Merger;
import org.apache.kafka.streams.kstream.SessionWindows;
import org.apache.kafka.streams.kstream.SlidingWindows;
import org.apache.kafka.streams.kstream.Window;
import org.apache.kafka.streams.kstream.Windows;
import org.apache.kafka.streams.kstream.internals.graph.OptimizableRepartitionNode.OptimizableRepartitionNodeBuilder;
import org.apache.kafka.streams.kstream.internals.graph.ProcessorGraphNode;
import org.apache.kafka.streams.kstream.internals.graph.ProcessorParameters;
import org.apache.kafka.streams.kstream.internals.graph.StatefulProcessorNode;
import org.apache.kafka.streams.kstream.internals.graph.GraphNode;
import org.apache.kafka.streams.processor.api.ProcessorSupplier;
import org.apache.kafka.streams.state.StoreBuilder;

class CogroupedStreamAggregateBuilder<K, VOut> {
    private final InternalStreamsBuilder builder;
    private final Map<KGroupedStreamImpl<K, ?>, GraphNode> parentNodes = new LinkedHashMap<>();

    CogroupedStreamAggregateBuilder(final InternalStreamsBuilder builder) {
        this.builder = builder;
    }
    <KR> KTable<KR, VOut> build(final Map<KGroupedStreamImpl<K, ?>, Aggregator<? super K, ? super Object, VOut>> groupPatterns,
                                final Initializer<VOut> initializer,
                                final NamedInternal named,
                                final StoreBuilder<?> storeBuilder,
                                final Serde<KR> keySerde,
                                final Serde<VOut> valueSerde,
                                final String queryableName) {
        processRepartitions(groupPatterns, storeBuilder);
        final Collection<GraphNode> processors = new ArrayList<>();
        final Collection<KStreamAggProcessorSupplier> parentProcessors = new ArrayList<>();
        boolean stateCreated = false;
        int counter = 0;
        for (final Entry<KGroupedStreamImpl<K, ?>, Aggregator<? super K, Object, VOut>> kGroupedStream : groupPatterns.entrySet()) {
            final KStreamAggProcessorSupplier<K, ?, K, ?> parentProcessor =
                new KStreamAggregate<>(storeBuilder.name(), initializer, kGroupedStream.getValue());
            parentProcessors.add(parentProcessor);
            final StatefulProcessorNode<K, ?> statefulProcessorNode = getStatefulProcessorNode(
                named.suffixWithOrElseGet(
                    "-cogroup-agg-" + counter++,
                    builder,
                    CogroupedKStreamImpl.AGGREGATE_NAME),
                stateCreated,
                storeBuilder,
                parentProcessor);
            stateCreated = true;
            processors.add(statefulProcessorNode);
            builder.addGraphNode(parentNodes.get(kGroupedStream.getKey()), statefulProcessorNode);
        }
        return createTable(processors, parentProcessors, named, keySerde, valueSerde, queryableName, storeBuilder.name());
    }

    @SuppressWarnings("unchecked")
    <KR, W extends Window> KTable<KR, VOut> build(final Map<KGroupedStreamImpl<K, ?>, Aggregator<? super K, ? super Object, VOut>> groupPatterns,
                                                  final Initializer<VOut> initializer,
                                                  final NamedInternal named,
                                                  final StoreBuilder<?> storeBuilder,
                                                  final Serde<KR> keySerde,
                                                  final Serde<VOut> valueSerde,
                                                  final String queryableName,
                                                  final Windows<W> windows) {
        processRepartitions(groupPatterns, storeBuilder);

        final Collection<GraphNode> processors = new ArrayList<>();
        final Collection<KStreamAggProcessorSupplier> parentProcessors = new ArrayList<>();
        boolean stateCreated = false;
        int counter = 0;
        for (final Entry<KGroupedStreamImpl<K, ?>, Aggregator<? super K, Object, VOut>> kGroupedStream : groupPatterns.entrySet()) {
            final KStreamAggProcessorSupplier<K, ?, K, ?>  parentProcessor =
                (KStreamAggProcessorSupplier<K, ?, K, ?>) new KStreamWindowAggregate<K, K, VOut, W>(
                    windows,
                    storeBuilder.name(),
                    EmitStrategy.onWindowUpdate(),
                    initializer,
                    kGroupedStream.getValue());
            parentProcessors.add(parentProcessor);
            final StatefulProcessorNode<K, ?> statefulProcessorNode = getStatefulProcessorNode(
                named.suffixWithOrElseGet(
                    "-cogroup-agg-" + counter++,
                    builder,
                    CogroupedKStreamImpl.AGGREGATE_NAME),
                stateCreated,
                storeBuilder,
                parentProcessor);
            stateCreated = true;
            processors.add(statefulProcessorNode);
            builder.addGraphNode(parentNodes.get(kGroupedStream.getKey()), statefulProcessorNode);
        }
        return createTable(processors, parentProcessors, named, keySerde, valueSerde, queryableName, storeBuilder.name());
    }

    @SuppressWarnings("unchecked")
    <KR> KTable<KR, VOut> build(final Map<KGroupedStreamImpl<K, ?>, Aggregator<? super K, ? super Object, VOut>> groupPatterns,
                                final Initializer<VOut> initializer,
                                final NamedInternal named,
                                final StoreBuilder<?> storeBuilder,
                                final Serde<KR> keySerde,
                                final Serde<VOut> valueSerde,
                                final String queryableName,
                                final SessionWindows sessionWindows,
                                final Merger<? super K, VOut> sessionMerger) {
        processRepartitions(groupPatterns, storeBuilder);
        final Collection<GraphNode> processors = new ArrayList<>();
        final Collection<KStreamAggProcessorSupplier> parentProcessors = new ArrayList<>();
        boolean stateCreated = false;
        int counter = 0;
        for (final Entry<KGroupedStreamImpl<K, ?>, Aggregator<? super K, Object, VOut>> kGroupedStream : groupPatterns.entrySet()) {
            final KStreamAggProcessorSupplier<K, ?, K, ?> parentProcessor =
                (KStreamAggProcessorSupplier<K, ?, K, ?>) new KStreamSessionWindowAggregate<K, K, VOut>(
                    sessionWindows,
                    storeBuilder.name(),
                    EmitStrategy.onWindowUpdate(),
                    initializer,
                    kGroupedStream.getValue(),
                    sessionMerger);
            parentProcessors.add(parentProcessor);
            final StatefulProcessorNode<K, ?> statefulProcessorNode = getStatefulProcessorNode(
                named.suffixWithOrElseGet(
                    "-cogroup-agg-" + counter++,
                    builder,
                    CogroupedKStreamImpl.AGGREGATE_NAME),
                stateCreated,
                storeBuilder,
                parentProcessor);
            stateCreated = true;
            processors.add(statefulProcessorNode);
            builder.addGraphNode(parentNodes.get(kGroupedStream.getKey()), statefulProcessorNode);
        }
        return createTable(processors, parentProcessors, named, keySerde, valueSerde, queryableName, storeBuilder.name());
    }

    @SuppressWarnings("unchecked")
    <KR> KTable<KR, VOut> build(final Map<KGroupedStreamImpl<K, ?>, Aggregator<? super K, ? super Object, VOut>> groupPatterns,
                                final Initializer<VOut> initializer,
                                final NamedInternal named,
                                final StoreBuilder<?> storeBuilder,
                                final Serde<KR> keySerde,
                                final Serde<VOut> valueSerde,
                                final String queryableName,
                                final SlidingWindows slidingWindows) {
        processRepartitions(groupPatterns, storeBuilder);
        final Collection<KStreamAggProcessorSupplier> parentProcessors = new ArrayList<>();
        final Collection<GraphNode> processors = new ArrayList<>();
        boolean stateCreated = false;
        int counter = 0;
        for (final Entry<KGroupedStreamImpl<K, ?>, Aggregator<? super K, Object, VOut>> kGroupedStream : groupPatterns.entrySet()) {
            final KStreamAggProcessorSupplier<K, ?, K, ?> parentProcessor =
                (KStreamAggProcessorSupplier<K, ?, K, ?>) new KStreamSlidingWindowAggregate<K, K, VOut>(
                    slidingWindows,
                    storeBuilder.name(),
                    // TODO: We do not have other emit policies for co-group yet
                    EmitStrategy.onWindowUpdate(),
                    initializer,
                    kGroupedStream.getValue());
            parentProcessors.add(parentProcessor);
            final StatefulProcessorNode<K, ?> statefulProcessorNode = getStatefulProcessorNode(
                named.suffixWithOrElseGet(
                    "-cogroup-agg-" + counter++,
                    builder,
                    CogroupedKStreamImpl.AGGREGATE_NAME),
                stateCreated,
                storeBuilder,
                parentProcessor);
            stateCreated = true;
            processors.add(statefulProcessorNode);
            builder.addGraphNode(parentNodes.get(kGroupedStream.getKey()), statefulProcessorNode);
        }
        return createTable(processors, parentProcessors, named, keySerde, valueSerde, queryableName, storeBuilder.name());
    }

    private void processRepartitions(final Map<KGroupedStreamImpl<K, ?>, Aggregator<? super K, ? super Object, VOut>> groupPatterns,
                                     final StoreBuilder<?> storeBuilder) {
        for (final KGroupedStreamImpl<K, ?> repartitionReqs : groupPatterns.keySet()) {

            if (repartitionReqs.repartitionRequired) {

                final OptimizableRepartitionNodeBuilder<K, ?> repartitionNodeBuilder = optimizableRepartitionNodeBuilder();

                final String repartitionNamePrefix = repartitionReqs.userProvidedRepartitionTopicName != null ?
                    repartitionReqs.userProvidedRepartitionTopicName : storeBuilder.name();

                createRepartitionSource(repartitionNamePrefix, repartitionNodeBuilder, repartitionReqs.keySerde, repartitionReqs.valueSerde);

                if (!parentNodes.containsKey(repartitionReqs)) {
                    final GraphNode repartitionNode = repartitionNodeBuilder.build();
                    builder.addGraphNode(repartitionReqs.graphNode, repartitionNode);
                    parentNodes.put(repartitionReqs, repartitionNode);
                }
            } else {
                parentNodes.put(repartitionReqs, repartitionReqs.graphNode);
            }
        }

        final Collection<? extends AbstractStream<K, ?>> groupedStreams = new ArrayList<>(parentNodes.keySet());
        final AbstractStream<K, ?> kGrouped = groupedStreams.iterator().next();
        groupedStreams.remove(kGrouped);
        kGrouped.ensureCopartitionWith(groupedStreams);

    }

    @SuppressWarnings("unchecked")
    <KR, VIn> KTable<KR, VOut> createTable(final Collection<GraphNode> processors,
                                           final Collection<KStreamAggProcessorSupplier> parentProcessors,
                                           final NamedInternal named,
                                           final Serde<KR> keySerde,
                                           final Serde<VOut> valueSerde,
                                           final String queryableName,
                                           final String storeName) {

        final String mergeProcessorName = named.suffixWithOrElseGet(
            "-cogroup-merge",
            builder,
            CogroupedKStreamImpl.MERGE_NAME);
        final KTableProcessorSupplier<K, VOut, K, VOut> passThrough = new KTablePassThrough<>(parentProcessors, storeName);
        final ProcessorParameters<K, VOut, ?, ?> processorParameters = new ProcessorParameters(passThrough, mergeProcessorName);
        final ProcessorGraphNode<K, VOut> mergeNode =
            new ProcessorGraphNode<>(mergeProcessorName, processorParameters);

        builder.addGraphNode(processors, mergeNode);

        return new KTableImpl<KR, VIn, VOut>(
            mergeProcessorName,
            keySerde,
            valueSerde,
            Collections.singleton(mergeNode.nodeName()),
            queryableName,
            passThrough,
            mergeNode,
            builder);
    }

    private StatefulProcessorNode<K, ?> getStatefulProcessorNode(final String processorName,
                                                                 final boolean stateCreated,
                                                                 final StoreBuilder<?> storeBuilder,
                                                                 final ProcessorSupplier<K, ?, K, ?> kStreamAggregate) {
        final StatefulProcessorNode<K, ?> statefulProcessorNode;
        if (!stateCreated) {
            statefulProcessorNode =
                new StatefulProcessorNode<>(
                    processorName,
                    new ProcessorParameters<>(kStreamAggregate, processorName),
                    storeBuilder
                );
        } else {
            statefulProcessorNode =
                new StatefulProcessorNode<>(
                    processorName,
                    new ProcessorParameters<>(kStreamAggregate, processorName),
                    new String[]{storeBuilder.name()}
                );
        }

        return statefulProcessorNode;
    }

    @SuppressWarnings("unchecked")
    private <VIn> void createRepartitionSource(final String repartitionTopicNamePrefix,
                                               final OptimizableRepartitionNodeBuilder<K, ?> optimizableRepartitionNodeBuilder,
                                               final Serde<K> keySerde,
                                               final Serde<?> valueSerde) {

        KStreamImpl.createRepartitionedSource(builder,
            keySerde,
            (Serde<VIn>) valueSerde,
            repartitionTopicNamePrefix,
            null,
            (OptimizableRepartitionNodeBuilder<K, VIn>) optimizableRepartitionNodeBuilder);

    }
}

相关信息

kafka 源码目录

相关文章

kafka AbstractKStreamTimeWindowAggregateProcessor 源码

kafka AbstractStream 源码

kafka BranchedInternal 源码

kafka BranchedKStreamImpl 源码

kafka Change 源码

kafka ChangedDeserializer 源码

kafka ChangedSerializer 源码

kafka CogroupedKStreamImpl 源码

kafka ConsumedInternal 源码

kafka FullChangeSerde 源码

0  赞