spark RecoverableNetworkWordCount 源码

  • 2022-10-20
  • 浏览 (227)

spark RecoverableNetworkWordCount 代码

文件路径:/examples/src/main/scala/org/apache/spark/examples/streaming/RecoverableNetworkWordCount.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.streaming

import java.io.File
import java.nio.charset.Charset

import com.google.common.io.Files

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.{Seconds, StreamingContext, Time}
import org.apache.spark.util.{IntParam, LongAccumulator}

/**
 * Use this singleton to get or register a Broadcast variable.
 */
object WordExcludeList {

  @volatile private var instance: Broadcast[Seq[String]] = null

  def getInstance(sc: SparkContext): Broadcast[Seq[String]] = {
    if (instance == null) {
      synchronized {
        if (instance == null) {
          val wordExcludeList = Seq("a", "b", "c")
          instance = sc.broadcast(wordExcludeList)
        }
      }
    }
    instance
  }
}

/**
 * Use this singleton to get or register an Accumulator.
 */
object DroppedWordsCounter {

  @volatile private var instance: LongAccumulator = null

  def getInstance(sc: SparkContext): LongAccumulator = {
    if (instance == null) {
      synchronized {
        if (instance == null) {
          instance = sc.longAccumulator("DroppedWordsCounter")
        }
      }
    }
    instance
  }
}

/**
 * Counts words in text encoded with UTF8 received from the network every second. This example also
 * shows how to use lazily instantiated singleton instances for Accumulator and Broadcast so that
 * they can be registered on driver failures.
 *
 * Usage: RecoverableNetworkWordCount <hostname> <port> <checkpoint-directory> <output-file>
 *   <hostname> and <port> describe the TCP server that Spark Streaming would connect to receive
 *   data. <checkpoint-directory> directory to HDFS-compatible file system which checkpoint data
 *   <output-file> file to which the word counts will be appended
 *
 * <checkpoint-directory> and <output-file> must be absolute paths
 *
 * To run this on your local machine, you need to first run a Netcat server
 *
 *      `$ nc -lk 9999`
 *
 * and run the example as
 *
 *      `$ ./bin/run-example org.apache.spark.examples.streaming.RecoverableNetworkWordCount \
 *              localhost 9999 ~/checkpoint/ ~/out`
 *
 * If the directory ~/checkpoint/ does not exist (e.g. running for the first time), it will create
 * a new StreamingContext (will print "Creating new context" to the console). Otherwise, if
 * checkpoint data exists in ~/checkpoint/, then it will create StreamingContext from
 * the checkpoint data.
 *
 * Refer to the online documentation for more details.
 */
object RecoverableNetworkWordCount {

  def createContext(ip: String, port: Int, outputPath: String, checkpointDirectory: String)
    : StreamingContext = {

    // If you do not see this printed, that means the StreamingContext has been loaded
    // from the new checkpoint
    println("Creating new context")
    val outputFile = new File(outputPath)
    if (outputFile.exists()) outputFile.delete()
    val sparkConf = new SparkConf().setAppName("RecoverableNetworkWordCount")
    // Create the context with a 1 second batch size
    val ssc = new StreamingContext(sparkConf, Seconds(1))
    ssc.checkpoint(checkpointDirectory)

    // Create a socket stream on target ip:port and count the
    // words in input stream of \n delimited text (e.g. generated by 'nc')
    val lines = ssc.socketTextStream(ip, port)
    val words = lines.flatMap(_.split(" "))
    val wordCounts = words.map((_, 1)).reduceByKey(_ + _)
    wordCounts.foreachRDD { (rdd: RDD[(String, Int)], time: Time) =>
      // Get or register the excludeList Broadcast
      val excludeList = WordExcludeList.getInstance(rdd.sparkContext)
      // Get or register the droppedWordsCounter Accumulator
      val droppedWordsCounter = DroppedWordsCounter.getInstance(rdd.sparkContext)
      // Use excludeList to drop words and use droppedWordsCounter to count them
      val counts = rdd.filter { case (word, count) =>
        if (excludeList.value.contains(word)) {
          droppedWordsCounter.add(count)
          false
        } else {
          true
        }
      }.collect().mkString("[", ", ", "]")
      val output = s"Counts at time $time $counts"
      println(output)
      println(s"Dropped ${droppedWordsCounter.value} word(s) totally")
      println(s"Appending to ${outputFile.getAbsolutePath}")
      Files.append(output + "\n", outputFile, Charset.defaultCharset())
    }
    ssc
  }

  def main(args: Array[String]): Unit = {
    if (args.length != 4) {
      System.err.println(s"Your arguments were ${args.mkString("[", ", ", "]")}")
      System.err.println(
        """
          |Usage: RecoverableNetworkWordCount <hostname> <port> <checkpoint-directory>
          |     <output-file>. <hostname> and <port> describe the TCP server that Spark
          |     Streaming would connect to receive data. <checkpoint-directory> directory to
          |     HDFS-compatible file system which checkpoint data <output-file> file to which the
          |     word counts will be appended
          |
          |In local mode, <master> should be 'local[n]' with n > 1
          |Both <checkpoint-directory> and <output-file> must be absolute paths
        """.stripMargin
      )
      System.exit(1)
    }
    val Array(ip, IntParam(port), checkpointDirectory, outputPath) = args
    val ssc = StreamingContext.getOrCreate(checkpointDirectory,
      () => createContext(ip, port, outputPath, checkpointDirectory))
    ssc.start()
    ssc.awaitTermination()
  }
}
// scalastyle:on println

相关信息

spark 源码目录

相关文章

spark CustomReceiver 源码

spark DirectKafkaWordCount 源码

spark DirectKerberizedKafkaWordCount 源码

spark HdfsWordCount 源码

spark NetworkWordCount 源码

spark QueueStream 源码

spark RawNetworkGrep 源码

spark SqlNetworkWordCount 源码

spark StatefulNetworkWordCount 源码

spark StreamingExamples 源码

0  赞