spark DirectKerberizedKafkaWordCount 源码
spark DirectKerberizedKafkaWordCount 代码
文件路径:/examples/src/main/scala/org/apache/spark/examples/streaming/DirectKerberizedKafkaWordCount.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples.streaming
import org.apache.kafka.clients.CommonClientConfigs
import org.apache.kafka.clients.consumer.ConsumerConfig
import org.apache.kafka.common.security.auth.SecurityProtocol
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.SparkConf
import org.apache.spark.streaming._
import org.apache.spark.streaming.kafka010._
/**
* Consumes messages from one or more topics in Kafka and does wordcount.
* Usage: DirectKerberizedKafkaWordCount <brokers> <topics>
* <brokers> is a list of one or more Kafka brokers
* <groupId> is a consumer group name to consume from topics
* <topics> is a list of one or more kafka topics to consume from
*
* Example:
* Yarn client:
* $ bin/run-example --files ${jaas_path}/kafka_jaas.conf,${keytab_path}/kafka.service.keytab \
* --driver-java-options "-Djava.security.auth.login.config=${path}/kafka_driver_jaas.conf" \
* --conf \
* "spark.executor.extraJavaOptions=-Djava.security.auth.login.config=./kafka_jaas.conf" \
* --master yarn
* streaming.DirectKerberizedKafkaWordCount broker1-host:port,broker2-host:port \
* consumer-group topic1,topic2
* Yarn cluster:
* $ bin/run-example --files \
* ${jaas_path}/kafka_jaas.conf,${keytab_path}/kafka.service.keytab,${krb5_path}/krb5.conf \
* --driver-java-options \
* "-Djava.security.auth.login.config=./kafka_jaas.conf \
* -Djava.security.krb5.conf=./krb5.conf" \
* --conf \
* "spark.executor.extraJavaOptions=-Djava.security.auth.login.config=./kafka_jaas.conf" \
* --master yarn --deploy-mode cluster \
* streaming.DirectKerberizedKafkaWordCount broker1-host:port,broker2-host:port \
* consumer-group topic1,topic2
*
* kafka_jaas.conf can manually create, template as:
* KafkaClient {
* com.sun.security.auth.module.Krb5LoginModule required
* keyTab="./kafka.service.keytab"
* useKeyTab=true
* storeKey=true
* useTicketCache=false
* serviceName="kafka"
* principal="kafka/host@EXAMPLE.COM";
* };
* kafka_driver_jaas.conf (used by yarn client) and kafka_jaas.conf are basically the same
* except for some differences at 'keyTab'. In kafka_driver_jaas.conf, 'keyTab' should be
* "${keytab_path}/kafka.service.keytab".
* In addition, for IBM JVMs, please use 'com.ibm.security.auth.module.Krb5LoginModule'
* instead of 'com.sun.security.auth.module.Krb5LoginModule'.
*
* Note that this example uses SASL_PLAINTEXT for simplicity; however,
* SASL_PLAINTEXT has no SSL encryption and likely be less secure. Please consider
* using SASL_SSL in production.
*/
object DirectKerberizedKafkaWordCount {
def main(args: Array[String]): Unit = {
if (args.length < 3) {
System.err.println(s"""
|Usage: DirectKerberizedKafkaWordCount <brokers> <groupId> <topics>
| <brokers> is a list of one or more Kafka brokers
| <groupId> is a consumer group name to consume from topics
| <topics> is a list of one or more kafka topics to consume from
|
""".stripMargin)
System.exit(1)
}
StreamingExamples.setStreamingLogLevels()
val Array(brokers, groupId, topics) = args
// Create context with 2 second batch interval
val sparkConf = new SparkConf().setAppName("DirectKerberizedKafkaWordCount")
val ssc = new StreamingContext(sparkConf, Seconds(2))
// Create direct kafka stream with brokers and topics
val topicsSet = topics.split(",").toSet
val kafkaParams = Map[String, Object](
ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> brokers,
ConsumerConfig.GROUP_ID_CONFIG -> groupId,
ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> classOf[StringDeserializer],
ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> classOf[StringDeserializer],
CommonClientConfigs.SECURITY_PROTOCOL_CONFIG -> SecurityProtocol.SASL_PLAINTEXT.name)
val messages = KafkaUtils.createDirectStream[String, String](
ssc,
LocationStrategies.PreferConsistent,
ConsumerStrategies.Subscribe[String, String](topicsSet, kafkaParams))
// Get the lines, split them into words, count the words and print
val lines = messages.map(_.value)
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1L)).reduceByKey(_ + _)
wordCounts.print()
// Start the computation
ssc.start()
ssc.awaitTermination()
}
}
// scalastyle:on println
相关信息
相关文章
spark RecoverableNetworkWordCount 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦