kafka KStreamReduce 源码

  • 2022-10-20
  • 浏览 (203)

kafka KStreamReduce 代码

文件路径:/streams/src/main/java/org/apache/kafka/streams/kstream/internals/KStreamReduce.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.kafka.streams.kstream.internals;

import org.apache.kafka.common.metrics.Sensor;
import org.apache.kafka.streams.kstream.Reducer;
import org.apache.kafka.streams.processor.api.ContextualProcessor;
import org.apache.kafka.streams.processor.api.Processor;
import org.apache.kafka.streams.processor.api.ProcessorContext;
import org.apache.kafka.streams.processor.api.Record;
import org.apache.kafka.streams.processor.api.RecordMetadata;
import org.apache.kafka.streams.processor.internals.metrics.StreamsMetricsImpl;
import org.apache.kafka.streams.state.TimestampedKeyValueStore;
import org.apache.kafka.streams.state.ValueAndTimestamp;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import static org.apache.kafka.streams.processor.internals.metrics.TaskMetrics.droppedRecordsSensor;
import static org.apache.kafka.streams.state.ValueAndTimestamp.getValueOrNull;

public class KStreamReduce<K, V> implements KStreamAggProcessorSupplier<K, V, K, V> {

    private static final Logger LOG = LoggerFactory.getLogger(KStreamReduce.class);

    private final String storeName;
    private final Reducer<V> reducer;

    private boolean sendOldValues = false;

    KStreamReduce(final String storeName, final Reducer<V> reducer) {
        this.storeName = storeName;
        this.reducer = reducer;
    }

    @Override
    public Processor<K, V, K, Change<V>> get() {
        return new KStreamReduceProcessor();
    }

    @Override
    public void enableSendingOldValues() {
        sendOldValues = true;
    }


    private class KStreamReduceProcessor extends ContextualProcessor<K, V, K, Change<V>> {
        private TimestampedKeyValueStore<K, V> store;
        private TimestampedTupleForwarder<K, V> tupleForwarder;
        private Sensor droppedRecordsSensor;

        @Override
        public void init(final ProcessorContext<K, Change<V>> context) {
            super.init(context);
            droppedRecordsSensor = droppedRecordsSensor(
                Thread.currentThread().getName(),
                context.taskId().toString(),
                (StreamsMetricsImpl) context.metrics()
            );
            store = context.getStateStore(storeName);
            tupleForwarder = new TimestampedTupleForwarder<>(
                store,
                context,
                new TimestampedCacheFlushListener<>(context),
                sendOldValues);
        }

        @Override
        public void process(final Record<K, V> record) {
            // If the key or value is null we don't need to proceed
            if (record.key() == null || record.value() == null) {
                if (context().recordMetadata().isPresent()) {
                    final RecordMetadata recordMetadata = context().recordMetadata().get();
                    LOG.warn(
                        "Skipping record due to null key or value. "
                            + "topic=[{}] partition=[{}] offset=[{}]",
                        recordMetadata.topic(), recordMetadata.partition(), recordMetadata.offset()
                    );
                } else {
                    LOG.warn(
                        "Skipping record due to null key. Topic, partition, and offset not known."
                    );
                }
                droppedRecordsSensor.record();
                return;
            }

            final ValueAndTimestamp<V> oldAggAndTimestamp = store.get(record.key());
            final V oldAgg = getValueOrNull(oldAggAndTimestamp);

            final V newAgg;
            final long newTimestamp;

            if (oldAgg == null) {
                newAgg = record.value();
                newTimestamp = record.timestamp();
            } else {
                newAgg = reducer.apply(oldAgg, record.value());
                newTimestamp = Math.max(record.timestamp(), oldAggAndTimestamp.timestamp());
            }

            store.put(record.key(), ValueAndTimestamp.make(newAgg, newTimestamp));
            tupleForwarder.maybeForward(
                record.withValue(new Change<>(newAgg, sendOldValues ? oldAgg : null))
                    .withTimestamp(newTimestamp));
        }
    }

    @Override
    public KTableValueGetterSupplier<K, V> view() {
        return new KTableValueGetterSupplier<K, V>() {

            public KTableValueGetter<K, V> get() {
                return new KStreamReduceValueGetter();
            }

            @Override
            public String[] storeNames() {
                return new String[]{storeName};
            }
        };
    }


    private class KStreamReduceValueGetter implements KTableValueGetter<K, V> {
        private TimestampedKeyValueStore<K, V> store;

        @Override
        public void init(final ProcessorContext<?, ?> context) {
            store = context.getStateStore(storeName);
        }

        @Override
        public ValueAndTimestamp<V> get(final K key) {
            return store.get(key);
        }
    }
}

相关信息

kafka 源码目录

相关文章

kafka AbstractKStreamTimeWindowAggregateProcessor 源码

kafka AbstractStream 源码

kafka BranchedInternal 源码

kafka BranchedKStreamImpl 源码

kafka Change 源码

kafka ChangedDeserializer 源码

kafka ChangedSerializer 源码

kafka CogroupedKStreamImpl 源码

kafka CogroupedStreamAggregateBuilder 源码

kafka ConsumedInternal 源码

0  赞