spark FilterEstimation 源码

  • 2022-10-20
  • 浏览 (213)

spark FilterEstimation 代码

文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/statsEstimation/FilterEstimation.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.catalyst.plans.logical.statsEstimation

import scala.collection.immutable.HashSet
import scala.collection.mutable

import org.apache.spark.internal.Logging
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.expressions.Literal.{FalseLiteral, TrueLiteral}
import org.apache.spark.sql.catalyst.plans.logical._
import org.apache.spark.sql.catalyst.plans.logical.statsEstimation.EstimationUtils._
import org.apache.spark.sql.types._

case class FilterEstimation(plan: Filter) extends Logging {

  private val childStats = plan.child.stats

  private val colStatsMap = ColumnStatsMap(childStats.attributeStats)

  /**
   * Returns an option of Statistics for a Filter logical plan node.
   * For a given compound expression condition, this method computes filter selectivity
   * (or the percentage of rows meeting the filter condition), which
   * is used to compute row count, size in bytes, and the updated statistics after a given
   * predicated is applied.
   *
   * @return Option[Statistics] When there is no statistics collected, it returns None.
   */
  def estimate: Option[Statistics] = {
    if (childStats.rowCount.isEmpty) return None

    // Estimate selectivity of this filter predicate, and update column stats if needed.
    // For not-supported condition, set filter selectivity to a conservative estimate 100%
    val filterSelectivity = calculateFilterSelectivity(plan.condition).getOrElse(1.0)

    val filteredRowCount: BigInt = ceil(BigDecimal(childStats.rowCount.get) * filterSelectivity)
    val newColStats = if (filteredRowCount == 0) {
      // The output is empty, we don't need to keep column stats.
      AttributeMap[ColumnStat](Nil)
    } else {
      colStatsMap.outputColumnStats(rowsBeforeFilter = childStats.rowCount.get,
        rowsAfterFilter = filteredRowCount)
    }
    val filteredSizeInBytes: BigInt = getOutputSize(plan.output, filteredRowCount, newColStats)

    Some(childStats.copy(sizeInBytes = filteredSizeInBytes, rowCount = Some(filteredRowCount),
      attributeStats = newColStats))
  }

  /**
   * Returns a percentage of rows meeting a condition in Filter node.
   * If it's a single condition, we calculate the percentage directly.
   * If it's a compound condition, it is decomposed into multiple single conditions linked with
   * AND, OR, NOT.
   * For logical AND conditions, we need to update stats after a condition estimation
   * so that the stats will be more accurate for subsequent estimation.  This is needed for
   * range condition such as (c > 40 AND c <= 50)
   * For logical OR and NOT conditions, we do not update stats after a condition estimation.
   *
   * @param condition the compound logical expression
   * @param update a boolean flag to specify if we need to update ColumnStat of a column
   *               for subsequent conditions
   * @return an optional double value to show the percentage of rows meeting a given condition.
   *         It returns None if the condition is not supported.
   */
  def calculateFilterSelectivity(condition: Expression, update: Boolean = true): Option[Double] = {
    condition match {
      case And(cond1, cond2) =>
        val percent1 = calculateFilterSelectivity(cond1, update).getOrElse(1.0)
        val percent2 = calculateFilterSelectivity(cond2, update).getOrElse(1.0)
        Some(percent1 * percent2)

      case Or(cond1, cond2) =>
        val percent1 = calculateFilterSelectivity(cond1, update = false).getOrElse(1.0)
        val percent2 = calculateFilterSelectivity(cond2, update = false).getOrElse(1.0)
        Some(percent1 + percent2 - (percent1 * percent2))

      // Not-operator pushdown
      case Not(And(cond1, cond2)) =>
        calculateFilterSelectivity(Or(Not(cond1), Not(cond2)), update = false)

      // Not-operator pushdown
      case Not(Or(cond1, cond2)) =>
        calculateFilterSelectivity(And(Not(cond1), Not(cond2)), update = false)

      // Collapse two consecutive Not operators which could be generated after Not-operator pushdown
      case Not(Not(cond)) =>
        calculateFilterSelectivity(cond, update = false)

      // The foldable Not has been processed in the ConstantFolding rule
      // This is a top-down traversal. The Not could be pushed down by the above two cases.
      case Not(l @ Literal(null, _)) =>
        calculateSingleCondition(l, update = false).map(boundProbability(_))

      case Not(cond) =>
        calculateFilterSelectivity(cond, update = false) match {
          case Some(percent) => Some(1.0 - percent)
          case None => None
        }

      case _ =>
        calculateSingleCondition(condition, update).map(boundProbability(_))
    }
  }

  /**
   * Returns a percentage of rows meeting a single condition in Filter node.
   * Currently we only support binary predicates where one side is a column,
   * and the other is a literal.
   *
   * @param condition a single logical expression
   * @param update a boolean flag to specify if we need to update ColumnStat of a column
   *               for subsequent conditions
   * @return an optional double value to show the percentage of rows meeting a given condition.
   *         It returns None if the condition is not supported.
   */
  def calculateSingleCondition(condition: Expression, update: Boolean): Option[Double] = {
    condition match {
      case l: Literal =>
        evaluateLiteral(l)

      // For evaluateBinary method, we assume the literal on the right side of an operator.
      // So we will change the order if not.

      // EqualTo/EqualNullSafe does not care about the order
      case Equality(ar: Attribute, l: Literal) =>
        evaluateEquality(ar, l, update)
      case Equality(l: Literal, ar: Attribute) =>
        evaluateEquality(ar, l, update)

      case op @ LessThan(ar: Attribute, l: Literal) =>
        evaluateBinary(op, ar, l, update)
      case op @ LessThan(l: Literal, ar: Attribute) =>
        evaluateBinary(GreaterThan(ar, l), ar, l, update)

      case op @ LessThanOrEqual(ar: Attribute, l: Literal) =>
        evaluateBinary(op, ar, l, update)
      case op @ LessThanOrEqual(l: Literal, ar: Attribute) =>
        evaluateBinary(GreaterThanOrEqual(ar, l), ar, l, update)

      case op @ GreaterThan(ar: Attribute, l: Literal) =>
        evaluateBinary(op, ar, l, update)
      case op @ GreaterThan(l: Literal, ar: Attribute) =>
        evaluateBinary(LessThan(ar, l), ar, l, update)

      case op @ GreaterThanOrEqual(ar: Attribute, l: Literal) =>
        evaluateBinary(op, ar, l, update)
      case op @ GreaterThanOrEqual(l: Literal, ar: Attribute) =>
        evaluateBinary(LessThanOrEqual(ar, l), ar, l, update)

      case In(ar: Attribute, expList)
        if expList.forall(e => e.isInstanceOf[Literal]) =>
        // Expression [In (value, seq[Literal])] will be replaced with optimized version
        // [InSet (value, HashSet[Literal])] in Optimizer, but only for list.size > 10.
        // Here we convert In into InSet anyway, because they share the same processing logic.
        val hSet = expList.map(e => e.eval())
        evaluateInSet(ar, HashSet() ++ hSet, update)

      case InSet(ar: Attribute, set) =>
        evaluateInSet(ar, set, update)

      // In current stage, we don't have advanced statistics such as sketches or histograms.
      // As a result, some operator can't estimate `nullCount` accurately. E.g. left outer join
      // estimation does not accurately update `nullCount` currently.
      // So for IsNull and IsNotNull predicates, we only estimate them when the child is a leaf
      // node, whose `nullCount` is accurate.
      // This is a limitation due to lack of advanced stats. We should remove it in the future.
      case IsNull(ar: Attribute) if plan.child.isInstanceOf[LeafNode] =>
        evaluateNullCheck(ar, isNull = true, update)

      case IsNotNull(ar: Attribute) if plan.child.isInstanceOf[LeafNode] =>
        evaluateNullCheck(ar, isNull = false, update)

      case op @ Equality(attrLeft: Attribute, attrRight: Attribute) =>
        evaluateBinaryForTwoColumns(op, attrLeft, attrRight, update)

      case op @ LessThan(attrLeft: Attribute, attrRight: Attribute) =>
        evaluateBinaryForTwoColumns(op, attrLeft, attrRight, update)

      case op @ LessThanOrEqual(attrLeft: Attribute, attrRight: Attribute) =>
        evaluateBinaryForTwoColumns(op, attrLeft, attrRight, update)

      case op @ GreaterThan(attrLeft: Attribute, attrRight: Attribute) =>
        evaluateBinaryForTwoColumns(op, attrLeft, attrRight, update)

      case op @ GreaterThanOrEqual(attrLeft: Attribute, attrRight: Attribute) =>
        evaluateBinaryForTwoColumns(op, attrLeft, attrRight, update)

      case _ =>
        // TODO: it's difficult to support string operators without advanced statistics.
        // Hence, these string operators Like(_, _) | Contains(_, _) | StartsWith(_, _)
        // | EndsWith(_, _) are not supported yet
        logDebug("[CBO] Unsupported filter condition: " + condition)
        None
    }
  }

  /**
   * Returns a percentage of rows meeting "IS NULL" or "IS NOT NULL" condition.
   *
   * @param attr an Attribute (or a column)
   * @param isNull set to true for "IS NULL" condition.  set to false for "IS NOT NULL" condition
   * @param update a boolean flag to specify if we need to update ColumnStat of a given column
   *               for subsequent conditions
   * @return an optional double value to show the percentage of rows meeting a given condition
   *         It returns None if no statistics collected for a given column.
   */
  def evaluateNullCheck(
      attr: Attribute,
      isNull: Boolean,
      update: Boolean): Option[Double] = {
    if (!colStatsMap.contains(attr) || colStatsMap(attr).nullCount.isEmpty) {
      logDebug("[CBO] No statistics for " + attr)
      return None
    }
    val colStat = colStatsMap(attr)
    val rowCountValue = childStats.rowCount.get
    val nullPercent: Double = if (rowCountValue == 0) {
      0
    } else if (colStat.nullCount.get > rowCountValue) {
      1
    } else {
      (BigDecimal(colStat.nullCount.get) / BigDecimal(rowCountValue)).toDouble
    }

    if (update) {
      val newStats = if (isNull) {
        colStat.copy(distinctCount = Some(0), min = None, max = None)
      } else {
        colStat.copy(nullCount = Some(0))
      }
      colStatsMap.update(attr, newStats)
    }

    val percent = if (isNull) {
      nullPercent
    } else {
      1.0 - nullPercent
    }

    Some(percent)
  }

  /**
   * Returns a percentage of rows meeting a binary comparison expression.
   *
   * @param op a binary comparison operator such as =, <, <=, >, >=
   * @param attr an Attribute (or a column)
   * @param literal a literal value (or constant)
   * @param update a boolean flag to specify if we need to update ColumnStat of a given column
   *               for subsequent conditions
   * @return an optional double value to show the percentage of rows meeting a given condition
   *         It returns None if no statistics exists for a given column or wrong value.
   */
  def evaluateBinary(
      op: BinaryComparison,
      attr: Attribute,
      literal: Literal,
      update: Boolean): Option[Double] = {
    if (!colStatsMap.contains(attr)) {
      logDebug("[CBO] No statistics for " + attr)
      return None
    }

    attr.dataType match {
      case _: NumericType | DateType | TimestampType | BooleanType =>
        evaluateBinaryForNumeric(op, attr, literal, update)
      case StringType | BinaryType =>
        // TODO: It is difficult to support other binary comparisons for String/Binary
        // type without min/max and advanced statistics like histogram.
        logDebug("[CBO] No range comparison statistics for String/Binary type " + attr)
        None
    }
  }

  /**
   * Returns a percentage of rows meeting an equality (=) expression.
   * This method evaluates the equality predicate for all data types.
   *
   * For EqualNullSafe (<=>), if the literal is not null, result will be the same as EqualTo;
   * if the literal is null, the condition will be changed to IsNull after optimization.
   * So we don't need specific logic for EqualNullSafe here.
   *
   * @param attr an Attribute (or a column)
   * @param literal a literal value (or constant)
   * @param update a boolean flag to specify if we need to update ColumnStat of a given column
   *               for subsequent conditions
   * @return an optional double value to show the percentage of rows meeting a given condition
   */
  def evaluateEquality(
      attr: Attribute,
      literal: Literal,
      update: Boolean): Option[Double] = {
    if (!colStatsMap.contains(attr)) {
      logDebug("[CBO] No statistics for " + attr)
      return None
    }
    val colStat = colStatsMap(attr)

    // decide if the value is in [min, max] of the column.
    // We currently don't store min/max for binary/string type.
    // Hence, we assume it is in boundary for binary/string type.
    val statsInterval = ValueInterval(colStat.min, colStat.max, attr.dataType)
    if (statsInterval.contains(literal)) {
      if (update) {
        // We update ColumnStat structure after apply this equality predicate:
        // Set distinctCount to 1, nullCount to 0, and min/max values (if exist) to the literal
        // value.
        val newStats = attr.dataType match {
          case StringType | BinaryType =>
            colStat.copy(distinctCount = Some(1), nullCount = Some(0))
          case _ =>
            colStat.copy(distinctCount = Some(1), min = Some(literal.value),
              max = Some(literal.value), nullCount = Some(0))
        }
        colStatsMap.update(attr, newStats)
      }

      if (colStat.histogram.isEmpty) {
        if (!colStat.distinctCount.isEmpty) {
          // returns 1/ndv if there is no histogram
          Some(1.0 / colStat.distinctCount.get.toDouble)
        } else {
          None
        }
      } else {
        Some(computeEqualityPossibilityByHistogram(literal, colStat))
      }

    } else {  // not in interval
      Some(0.0)
    }
  }

  /**
   * Returns a percentage of rows meeting a Literal expression.
   * This method evaluates all the possible literal cases in Filter.
   *
   * FalseLiteral and TrueLiteral should be eliminated by optimizer, but null literal might be added
   * by optimizer rule NullPropagation. For safety, we handle all the cases here.
   *
   * @param literal a literal value (or constant)
   * @return an optional double value to show the percentage of rows meeting a given condition
   */
  def evaluateLiteral(literal: Literal): Option[Double] = {
    literal match {
      case Literal(null, _) => Some(0.0)
      case FalseLiteral => Some(0.0)
      case TrueLiteral => Some(1.0)
      // Ideally, we should not hit the following branch
      case _ => None
    }
  }

  /**
   * Returns a percentage of rows meeting "IN" operator expression.
   * This method evaluates the equality predicate for all data types.
   *
   * @param attr an Attribute (or a column)
   * @param hSet a set of literal values
   * @param update a boolean flag to specify if we need to update ColumnStat of a given column
   *               for subsequent conditions
   * @return an optional double value to show the percentage of rows meeting a given condition
   *         It returns None if no statistics exists for a given column.
   */

  def evaluateInSet(
      attr: Attribute,
      hSet: Set[Any],
      update: Boolean): Option[Double] = {
    if (!colStatsMap.hasDistinctCount(attr)) {
      logDebug("[CBO] No statistics for " + attr)
      return None
    }

    val colStat = colStatsMap(attr)
    val ndv = colStat.distinctCount.get
    val dataType = attr.dataType
    var newNdv = ndv

    // use [min, max] to filter the original hSet
    dataType match {
      case _: NumericType | BooleanType | DateType | TimestampType =>
        if (ndv.toDouble == 0 || colStat.min.isEmpty || colStat.max.isEmpty)  {
          return Some(0.0)
        }

        val statsInterval =
          ValueInterval(colStat.min, colStat.max, dataType).asInstanceOf[NumericValueInterval]
        val validQuerySet = hSet.filter { v =>
          v != null && statsInterval.contains(Literal(v, dataType))
        }

        if (validQuerySet.isEmpty) {
          return Some(0.0)
        }

        val newMax = validQuerySet.maxBy(EstimationUtils.toDouble(_, dataType))
        val newMin = validQuerySet.minBy(EstimationUtils.toDouble(_, dataType))
        // newNdv should not be greater than the old ndv.  For example, column has only 2 values
        // 1 and 6. The predicate column IN (1, 2, 3, 4, 5). validQuerySet.size is 5.
        newNdv = ndv.min(BigInt(validQuerySet.size))
        if (update) {
          val newStats = colStat.copy(distinctCount = Some(newNdv), min = Some(newMin),
            max = Some(newMax), nullCount = Some(0))
          colStatsMap.update(attr, newStats)
        }

      // We assume the whole set since there is no min/max information for String/Binary type
      case StringType | BinaryType =>
        if (ndv.toDouble == 0)  {
          return Some(0.0)
        }

        newNdv = ndv.min(BigInt(hSet.size))
        if (update) {
          val newStats = colStat.copy(distinctCount = Some(newNdv), nullCount = Some(0))
          colStatsMap.update(attr, newStats)
        }
    }

    // return the filter selectivity.  Without advanced statistics such as histograms,
    // we have to assume uniform distribution.
    Some(math.min(newNdv.toDouble / ndv.toDouble, 1.0))
  }

  /**
   * Returns a percentage of rows meeting a binary comparison expression.
   * This method evaluate expression for Numeric/Date/Timestamp/Boolean columns.
   *
   * @param op a binary comparison operator such as =, <, <=, >, >=
   * @param attr an Attribute (or a column)
   * @param literal a literal value (or constant)
   * @param update a boolean flag to specify if we need to update ColumnStat of a given column
   *               for subsequent conditions
   * @return an optional double value to show the percentage of rows meeting a given condition
   */
  def evaluateBinaryForNumeric(
      op: BinaryComparison,
      attr: Attribute,
      literal: Literal,
      update: Boolean): Option[Double] = {

    if (!colStatsMap.hasMinMaxStats(attr) || !colStatsMap.hasDistinctCount(attr)) {
      logDebug("[CBO] No statistics for " + attr)
      return None
    }

    val colStat = colStatsMap(attr)
    val statsInterval =
      ValueInterval(colStat.min, colStat.max, attr.dataType).asInstanceOf[NumericValueInterval]
    val max = statsInterval.max
    val min = statsInterval.min
    val ndv = colStat.distinctCount.get.toDouble

    // determine the overlapping degree between predicate interval and column's interval
    val numericLiteral = EstimationUtils.toDouble(literal.value, literal.dataType)
    val (noOverlap: Boolean, completeOverlap: Boolean) = op match {
      case _: LessThan =>
        (numericLiteral <= min, numericLiteral > max)
      case _: LessThanOrEqual =>
        (numericLiteral < min, numericLiteral >= max)
      case _: GreaterThan =>
        (numericLiteral >= max, numericLiteral < min)
      case _: GreaterThanOrEqual =>
        (numericLiteral > max, numericLiteral <= min)
    }

    var percent = 1.0
    if (noOverlap) {
      percent = 0.0
    } else if (completeOverlap) {
      percent = 1.0
    } else {
      // This is the partial overlap case:

      if (colStat.histogram.isEmpty) {
        // Without advanced statistics like histogram, we assume uniform data distribution.
        // We just prorate the adjusted range over the initial range to compute filter selectivity.
        assert(max > min)
        percent = op match {
          case _: LessThan =>
            if (numericLiteral == max) {
              // If the literal value is right on the boundary, we can minus the part of the
              // boundary value (1/ndv).
              1.0 - 1.0 / ndv
            } else {
              (numericLiteral - min) / (max - min)
            }
          case _: LessThanOrEqual =>
            if (numericLiteral == min) {
              // The boundary value is the only satisfying value.
              1.0 / ndv
            } else {
              (numericLiteral - min) / (max - min)
            }
          case _: GreaterThan =>
            if (numericLiteral == min) {
              1.0 - 1.0 / ndv
            } else {
              (max - numericLiteral) / (max - min)
            }
          case _: GreaterThanOrEqual =>
            if (numericLiteral == max) {
              1.0 / ndv
            } else {
              (max - numericLiteral) / (max - min)
            }
        }
      } else {
        percent = computeComparisonPossibilityByHistogram(op, literal, colStat)
      }

      if (update) {
        val newValue = Some(literal.value)
        var newMax = colStat.max
        var newMin = colStat.min

        op match {
          case _: GreaterThan | _: GreaterThanOrEqual =>
            newMin = newValue
          case _: LessThan | _: LessThanOrEqual =>
            newMax = newValue
        }

        val newStats = colStat.copy(distinctCount = Some(ceil(ndv * percent)),
          min = newMin, max = newMax, nullCount = Some(0))

        colStatsMap.update(attr, newStats)
      }
    }

    Some(percent)
  }

  /**
   * Computes the possibility of an equality predicate using histogram.
   */
  private def computeEqualityPossibilityByHistogram(
      literal: Literal, colStat: ColumnStat): Double = {
    val datum = EstimationUtils.toDouble(literal.value, literal.dataType)
    val histogram = colStat.histogram.get

    // find bins where column's current min and max locate.  Note that a column's [min, max]
    // range may change due to another condition applied earlier.
    val min = EstimationUtils.toDouble(colStat.min.get, literal.dataType)
    val max = EstimationUtils.toDouble(colStat.max.get, literal.dataType)

    // compute how many bins the column's current valid range [min, max] occupies.
    val numBinsHoldingEntireRange = EstimationUtils.numBinsHoldingRange(
      upperBound = max,
      upperBoundInclusive = true,
      lowerBound = min,
      lowerBoundInclusive = true,
      histogram.bins)

    val numBinsHoldingDatum = EstimationUtils.numBinsHoldingRange(
      upperBound = datum,
      upperBoundInclusive = true,
      lowerBound = datum,
      lowerBoundInclusive = true,
      histogram.bins)

    numBinsHoldingDatum / numBinsHoldingEntireRange
  }

  /**
   * Computes the possibility of a comparison predicate using histogram.
   */
  private def computeComparisonPossibilityByHistogram(
      op: BinaryComparison, literal: Literal, colStat: ColumnStat): Double = {
    val datum = EstimationUtils.toDouble(literal.value, literal.dataType)
    val histogram = colStat.histogram.get

    // find bins where column's current min and max locate.  Note that a column's [min, max]
    // range may change due to another condition applied earlier.
    val min = EstimationUtils.toDouble(colStat.min.get, literal.dataType)
    val max = EstimationUtils.toDouble(colStat.max.get, literal.dataType)

    // compute how many bins the column's current valid range [min, max] occupies.
    val numBinsHoldingEntireRange = EstimationUtils.numBinsHoldingRange(
      max, upperBoundInclusive = true, min, lowerBoundInclusive = true, histogram.bins)

    val numBinsHoldingRange = op match {
      // LessThan and LessThanOrEqual share the same logic, the only difference is whether to
      // include the upperBound in the range.
      case _: LessThan =>
        EstimationUtils.numBinsHoldingRange(
          upperBound = datum,
          upperBoundInclusive = false,
          lowerBound = min,
          lowerBoundInclusive = true,
          histogram.bins)
      case _: LessThanOrEqual =>
        EstimationUtils.numBinsHoldingRange(
          upperBound = datum,
          upperBoundInclusive = true,
          lowerBound = min,
          lowerBoundInclusive = true,
          histogram.bins)

      // GreaterThan and GreaterThanOrEqual share the same logic, the only difference is whether to
      // include the lowerBound in the range.
      case _: GreaterThan =>
        EstimationUtils.numBinsHoldingRange(
          upperBound = max,
          upperBoundInclusive = true,
          lowerBound = datum,
          lowerBoundInclusive = false,
          histogram.bins)
      case _: GreaterThanOrEqual =>
        EstimationUtils.numBinsHoldingRange(
          upperBound = max,
          upperBoundInclusive = true,
          lowerBound = datum,
          lowerBoundInclusive = true,
          histogram.bins)
    }

    numBinsHoldingRange / numBinsHoldingEntireRange
  }

  /**
   * Returns a percentage of rows meeting a binary comparison expression containing two columns.
   * In SQL queries, we also see predicate expressions involving two columns
   * such as "column-1 (op) column-2" where column-1 and column-2 belong to same table.
   * Note that, if column-1 and column-2 belong to different tables, then it is a join
   * operator's work, NOT a filter operator's work.
   *
   * @param op a binary comparison operator, including =, <=>, <, <=, >, >=
   * @param attrLeft the left Attribute (or a column)
   * @param attrRight the right Attribute (or a column)
   * @param update a boolean flag to specify if we need to update ColumnStat of the given columns
   *               for subsequent conditions
   * @return an optional double value to show the percentage of rows meeting a given condition
   */
  def evaluateBinaryForTwoColumns(
      op: BinaryComparison,
      attrLeft: Attribute,
      attrRight: Attribute,
      update: Boolean): Option[Double] = {

    if (!colStatsMap.hasCountStats(attrLeft)) {
      logDebug("[CBO] No statistics for " + attrLeft)
      return None
    }
    if (!colStatsMap.hasCountStats(attrRight)) {
      logDebug("[CBO] No statistics for " + attrRight)
      return None
    }

    attrLeft.dataType match {
      case StringType | BinaryType =>
        // TODO: It is difficult to support other binary comparisons for String/Binary
        // type without min/max and advanced statistics like histogram.
        logDebug("[CBO] No range comparison statistics for String/Binary type " + attrLeft)
        return None
      case _ =>
        if (!colStatsMap.hasMinMaxStats(attrLeft)) {
          logDebug("[CBO] No min/max statistics for " + attrLeft)
          return None
        }
        if (!colStatsMap.hasMinMaxStats(attrRight)) {
          logDebug("[CBO] No min/max statistics for " + attrRight)
          return None
        }
    }

    val colStatLeft = colStatsMap(attrLeft)
    val statsIntervalLeft = ValueInterval(colStatLeft.min, colStatLeft.max, attrLeft.dataType)
      .asInstanceOf[NumericValueInterval]
    val maxLeft = statsIntervalLeft.max
    val minLeft = statsIntervalLeft.min

    val colStatRight = colStatsMap(attrRight)
    val statsIntervalRight = ValueInterval(colStatRight.min, colStatRight.max, attrRight.dataType)
      .asInstanceOf[NumericValueInterval]
    val maxRight = statsIntervalRight.max
    val minRight = statsIntervalRight.min

    // determine the overlapping degree between predicate interval and column's interval
    val allNotNull = (colStatLeft.nullCount.get == 0) && (colStatRight.nullCount.get == 0)
    val (noOverlap: Boolean, completeOverlap: Boolean) = op match {
      // Left < Right or Left <= Right
      // - no overlap:
      //      minRight           maxRight     minLeft       maxLeft
      // --------+------------------+------------+-------------+------->
      // - complete overlap: (If null values exists, we set it to partial overlap.)
      //      minLeft            maxLeft      minRight      maxRight
      // --------+------------------+------------+-------------+------->
      case _: LessThan =>
        (minLeft >= maxRight, (maxLeft < minRight) && allNotNull)
      case _: LessThanOrEqual =>
        (minLeft > maxRight, (maxLeft <= minRight) && allNotNull)

      // Left > Right or Left >= Right
      // - no overlap:
      //      minLeft            maxLeft      minRight      maxRight
      // --------+------------------+------------+-------------+------->
      // - complete overlap: (If null values exists, we set it to partial overlap.)
      //      minRight           maxRight     minLeft       maxLeft
      // --------+------------------+------------+-------------+------->
      case _: GreaterThan =>
        (maxLeft <= minRight, (minLeft > maxRight) && allNotNull)
      case _: GreaterThanOrEqual =>
        (maxLeft < minRight, (minLeft >= maxRight) && allNotNull)

      // Left = Right or Left <=> Right
      // - no overlap:
      //      minLeft            maxLeft      minRight      maxRight
      // --------+------------------+------------+-------------+------->
      //      minRight           maxRight     minLeft       maxLeft
      // --------+------------------+------------+-------------+------->
      // - complete overlap:
      //      minLeft            maxLeft
      //      minRight           maxRight
      // --------+------------------+------->
      case _: EqualTo =>
        ((maxLeft < minRight) || (maxRight < minLeft),
          (minLeft == minRight) && (maxLeft == maxRight) && allNotNull
          && (colStatLeft.distinctCount.get == colStatRight.distinctCount.get)
        )
      case _: EqualNullSafe =>
        // For null-safe equality, we use a very restrictive condition to evaluate its overlap.
        // If null values exists, we set it to partial overlap.
        (((maxLeft < minRight) || (maxRight < minLeft)) && allNotNull,
          (minLeft == minRight) && (maxLeft == maxRight) && allNotNull
            && (colStatLeft.distinctCount.get == colStatRight.distinctCount.get)
        )
    }

    var percent = 1.0
    if (noOverlap) {
      percent = 0.0
    } else if (completeOverlap) {
      percent = 1.0
    } else {
      // For partial overlap, we use an empirical value 1/3 as suggested by the book
      // "Database Systems, the complete book".
      percent = 1.0 / 3.0

      if (update) {
        // Need to adjust new min/max after the filter condition is applied

        val ndvLeft = BigDecimal(colStatLeft.distinctCount.get)
        val newNdvLeft = ceil(ndvLeft * percent)
        val ndvRight = BigDecimal(colStatRight.distinctCount.get)
        val newNdvRight = ceil(ndvRight * percent)

        var newMaxLeft = colStatLeft.max
        var newMinLeft = colStatLeft.min
        var newMaxRight = colStatRight.max
        var newMinRight = colStatRight.min

        op match {
          case _: LessThan | _: LessThanOrEqual =>
            // the left side should be less than the right side.
            // If not, we need to adjust it to narrow the range.
            // Left < Right or Left <= Right
            //      minRight     <     minLeft
            // --------+******************+------->
            //              filtered      ^
            //                            |
            //                        newMinRight
            //
            //      maxRight     <     maxLeft
            // --------+******************+------->
            //         ^    filtered
            //         |
            //     newMaxLeft
            if (minLeft > minRight) newMinRight = colStatLeft.min
            if (maxLeft > maxRight) newMaxLeft = colStatRight.max

          case _: GreaterThan | _: GreaterThanOrEqual =>
            // the left side should be greater than the right side.
            // If not, we need to adjust it to narrow the range.
            // Left > Right or Left >= Right
            //      minLeft     <      minRight
            // --------+******************+------->
            //              filtered      ^
            //                            |
            //                        newMinLeft
            //
            //      maxLeft     <      maxRight
            // --------+******************+------->
            //         ^    filtered
            //         |
            //     newMaxRight
            if (minLeft < minRight) newMinLeft = colStatRight.min
            if (maxLeft < maxRight) newMaxRight = colStatLeft.max

          case _: EqualTo | _: EqualNullSafe =>
            // need to set new min to the larger min value, and
            // set the new max to the smaller max value.
            // Left = Right or Left <=> Right
            //      minLeft     <      minRight
            // --------+******************+------->
            //              filtered      ^
            //                            |
            //                        newMinLeft
            //
            //      minRight    <=     minLeft
            // --------+******************+------->
            //              filtered      ^
            //                            |
            //                        newMinRight
            //
            //      maxLeft     <      maxRight
            // --------+******************+------->
            //         ^    filtered
            //         |
            //     newMaxRight
            //
            //      maxRight    <=     maxLeft
            // --------+******************+------->
            //         ^    filtered
            //         |
            //     newMaxLeft
          if (minLeft < minRight) {
            newMinLeft = colStatRight.min
          } else {
            newMinRight = colStatLeft.min
          }
          if (maxLeft < maxRight) {
            newMaxRight = colStatLeft.max
          } else {
            newMaxLeft = colStatRight.max
          }
        }

        val newStatsLeft = colStatLeft.copy(distinctCount = Some(newNdvLeft), min = newMinLeft,
          max = newMaxLeft)
        colStatsMap(attrLeft) = newStatsLeft
        val newStatsRight = colStatRight.copy(distinctCount = Some(newNdvRight), min = newMinRight,
          max = newMaxRight)
        colStatsMap(attrRight) = newStatsRight
      }
    }

    Some(percent)
  }

  // Bound result in [0, 1]
  private def boundProbability(p: Double): Double = {
    Math.max(0.0, Math.min(1.0, p))
  }
}

/**
 * This class contains the original column stats from child, and maintains the updated column stats.
 * We will update the corresponding ColumnStats for a column after we apply a predicate condition.
 * For example, column c has [min, max] value as [0, 100].  In a range condition such as
 * (c > 40 AND c <= 50), we need to set the column's [min, max] value to [40, 100] after we
 * evaluate the first condition c > 40. We also need to set the column's [min, max] value to
 * [40, 50] after we evaluate the second condition c <= 50.
 *
 * @param originalMap Original column stats from child.
 */
case class ColumnStatsMap(originalMap: AttributeMap[ColumnStat]) {

  /** This map maintains the latest column stats. */
  private val updatedMap: mutable.Map[ExprId, (Attribute, ColumnStat)] = mutable.HashMap.empty

  def contains(a: Attribute): Boolean = updatedMap.contains(a.exprId) || originalMap.contains(a)

  /**
   * Gets an Option of column stat for the given attribute.
   * Prefer the column stat in updatedMap than that in originalMap,
   * because updatedMap has the latest (updated) column stats.
   */
  def get(a: Attribute): Option[ColumnStat] = {
    if (updatedMap.contains(a.exprId)) {
      updatedMap.get(a.exprId).map(_._2)
    } else {
      originalMap.get(a)
    }
  }

  def hasCountStats(a: Attribute): Boolean =
    get(a).exists(_.hasCountStats)

  def hasDistinctCount(a: Attribute): Boolean =
    get(a).exists(_.distinctCount.isDefined)

  def hasMinMaxStats(a: Attribute): Boolean =
    get(a).exists(_.hasMinMaxStats)

  /**
   * Gets column stat for the given attribute. Prefer the column stat in updatedMap than that in
   * originalMap, because updatedMap has the latest (updated) column stats.
   */
  def apply(a: Attribute): ColumnStat = {
    get(a).get
  }

  /** Updates column stats in updatedMap. */
  def update(a: Attribute, stats: ColumnStat): Unit = updatedMap.update(a.exprId, a -> stats)

  /**
   * Collects updated column stats; scales down column count stats if the
   * number of rows decreases after this Filter operator.
   */
  def outputColumnStats(rowsBeforeFilter: BigInt, rowsAfterFilter: BigInt)
    : AttributeMap[ColumnStat] = {
    val newColumnStats = originalMap.map { case (attr, oriColStat) =>
      attr -> oriColStat.updateCountStats(
        rowsBeforeFilter, rowsAfterFilter, updatedMap.get(attr.exprId).map(_._2))
    }
    AttributeMap(newColumnStats.toSeq)
  }
}

相关信息

spark 源码目录

相关文章

spark AggregateEstimation 源码

spark BasicStatsPlanVisitor 源码

spark EstimationUtils 源码

spark JoinEstimation 源码

spark LogicalPlanStats 源码

spark ProjectEstimation 源码

spark SizeInBytesOnlyStatsPlanVisitor 源码

spark UnionEstimation 源码

spark ValueInterval 源码

0  赞