spark AggregateEstimation 源码

  • 2022-10-20
  • 浏览 (234)

spark AggregateEstimation 代码

文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/statsEstimation/AggregateEstimation.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.catalyst.plans.logical.statsEstimation

import org.apache.spark.sql.catalyst.expressions.{Attribute, AttributeMap}
import org.apache.spark.sql.catalyst.plans.logical.{Aggregate, Statistics}


object AggregateEstimation {
  import EstimationUtils._

  /**
   * Estimate the number of output rows based on column stats of group-by columns, and propagate
   * column stats for aggregate expressions.
   */
  def estimate(agg: Aggregate): Option[Statistics] = {
    val childStats = agg.child.stats
    // Check if we have column stats for all group-by columns.
    val colStatsExist = agg.groupingExpressions.forall { e =>
      e.isInstanceOf[Attribute] &&
        childStats.attributeStats.get(e.asInstanceOf[Attribute]).exists(_.hasCountStats)
    }
    if (rowCountsExist(agg.child) && colStatsExist) {
      // Multiply distinct counts of group-by columns. This is an upper bound, which assumes
      // the data contains all combinations of distinct values of group-by columns.
      var outputRows: BigInt = agg.groupingExpressions.foldLeft(BigInt(1))(
        (res, expr) => {
          val columnStat = childStats.attributeStats(expr.asInstanceOf[Attribute])
          val distinctCount = columnStat.distinctCount.get
          val distinctValue: BigInt = if (columnStat.nullCount.get > 0) {
            distinctCount + 1
          } else {
            distinctCount
          }
          res * distinctValue
        })

      outputRows = if (agg.groupingExpressions.isEmpty) {
        // If there's no group-by columns, the output is a single row containing values of aggregate
        // functions: aggregated results for non-empty input or initial values for empty input.
        1
      } else {
        // Here we set another upper bound for the number of output rows: it must not be larger than
        // child's number of rows.
        outputRows.min(childStats.rowCount.get)
      }

      val aliasStats = EstimationUtils.getAliasStats(
        agg.expressions, childStats.attributeStats, outputRows)

      val outputAttrStats = getOutputMap(
        AttributeMap(childStats.attributeStats.toSeq ++ aliasStats), agg.output)
      Some(Statistics(
        sizeInBytes = getOutputSize(agg.output, outputRows, outputAttrStats),
        rowCount = Some(outputRows),
        attributeStats = outputAttrStats))
    } else {
      None
    }
  }
}

相关信息

spark 源码目录

相关文章

spark BasicStatsPlanVisitor 源码

spark EstimationUtils 源码

spark FilterEstimation 源码

spark JoinEstimation 源码

spark LogicalPlanStats 源码

spark ProjectEstimation 源码

spark SizeInBytesOnlyStatsPlanVisitor 源码

spark UnionEstimation 源码

spark ValueInterval 源码

0  赞