spark ClusteringEvaluator 源码
spark ClusteringEvaluator 代码
文件路径:/mllib/src/main/scala/org/apache/spark/ml/evaluation/ClusteringEvaluator.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.ml.evaluation
import org.apache.spark.annotation.Since
import org.apache.spark.ml.param.{Param, ParamMap, ParamValidators}
import org.apache.spark.ml.param.shared.{HasFeaturesCol, HasPredictionCol, HasWeightCol}
import org.apache.spark.ml.util._
import org.apache.spark.sql.Dataset
import org.apache.spark.sql.functions._
/**
* Evaluator for clustering results.
* The metric computes the Silhouette measure using the specified distance measure.
*
* The Silhouette is a measure for the validation of the consistency within clusters. It ranges
* between 1 and -1, where a value close to 1 means that the points in a cluster are close to the
* other points in the same cluster and far from the points of the other clusters.
*/
@Since("2.3.0")
class ClusteringEvaluator @Since("2.3.0") (@Since("2.3.0") override val uid: String)
extends Evaluator with HasPredictionCol with HasFeaturesCol with HasWeightCol
with DefaultParamsWritable {
@Since("2.3.0")
def this() = this(Identifiable.randomUID("cluEval"))
@Since("2.3.0")
override def copy(pMap: ParamMap): ClusteringEvaluator = this.defaultCopy(pMap)
@Since("2.3.0")
override def isLargerBetter: Boolean = true
/** @group setParam */
@Since("2.3.0")
def setPredictionCol(value: String): this.type = set(predictionCol, value)
/** @group setParam */
@Since("2.3.0")
def setFeaturesCol(value: String): this.type = set(featuresCol, value)
/** @group setParam */
@Since("3.1.0")
def setWeightCol(value: String): this.type = set(weightCol, value)
/**
* param for metric name in evaluation
* (supports `"silhouette"` (default))
* @group param
*/
@Since("2.3.0")
val metricName: Param[String] = {
val allowedParams = ParamValidators.inArray(Array("silhouette"))
new Param(
this, "metricName", "metric name in evaluation (silhouette)", allowedParams)
}
/** @group getParam */
@Since("2.3.0")
def getMetricName: String = $(metricName)
/** @group setParam */
@Since("2.3.0")
def setMetricName(value: String): this.type = set(metricName, value)
/**
* param for distance measure to be used in evaluation
* (supports `"squaredEuclidean"` (default), `"cosine"`)
* @group param
*/
@Since("2.4.0")
val distanceMeasure: Param[String] = {
val availableValues = Array("squaredEuclidean", "cosine")
val allowedParams = ParamValidators.inArray(availableValues)
new Param(this, "distanceMeasure", "distance measure in evaluation. Supported options: " +
availableValues.mkString("'", "', '", "'"), allowedParams)
}
/** @group getParam */
@Since("2.4.0")
def getDistanceMeasure: String = $(distanceMeasure)
/** @group setParam */
@Since("2.4.0")
def setDistanceMeasure(value: String): this.type = set(distanceMeasure, value)
setDefault(metricName -> "silhouette", distanceMeasure -> "squaredEuclidean")
@Since("2.3.0")
override def evaluate(dataset: Dataset[_]): Double = {
val metrics = getMetrics(dataset)
$(metricName) match {
case ("silhouette") => metrics.silhouette
case (other) =>
throw new IllegalArgumentException(s"No support for metric $other")
}
}
/**
* Get a ClusteringMetrics, which can be used to get clustering metrics such as
* silhouette score.
*
* @param dataset a dataset that contains labels/observations and predictions.
* @return ClusteringMetrics
*/
@Since("3.1.0")
def getMetrics(dataset: Dataset[_]): ClusteringMetrics = {
val schema = dataset.schema
SchemaUtils.validateVectorCompatibleColumn(schema, $(featuresCol))
SchemaUtils.checkNumericType(schema, $(predictionCol))
if (isDefined(weightCol)) {
SchemaUtils.checkNumericType(schema, $(weightCol))
}
val df = dataset.select(
col($(predictionCol)),
DatasetUtils.columnToVector(dataset, $(featuresCol))
.as($(featuresCol), dataset.schema($(featuresCol)).metadata),
DatasetUtils.checkNonNegativeWeights(get(weightCol))
.as(if (!isDefined(weightCol)) "weightCol" else $(weightCol))
)
val metrics = new ClusteringMetrics(df)
metrics.setDistanceMeasure($(distanceMeasure))
metrics
}
@Since("3.0.0")
override def toString: String = {
s"ClusteringEvaluator: uid=$uid, metricName=${$(metricName)}, " +
s"distanceMeasure=${$(distanceMeasure)}"
}
}
@Since("2.3.0")
object ClusteringEvaluator
extends DefaultParamsReadable[ClusteringEvaluator] {
@Since("2.3.0")
override def load(path: String): ClusteringEvaluator = super.load(path)
}
相关信息
相关文章
spark BinaryClassificationEvaluator 源码
spark MulticlassClassificationEvaluator 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦