spark RegressionEvaluator 源码
spark RegressionEvaluator 代码
文件路径:/mllib/src/main/scala/org/apache/spark/ml/evaluation/RegressionEvaluator.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.ml.evaluation
import org.apache.spark.annotation.Since
import org.apache.spark.ml.param.{BooleanParam, Param, ParamMap, ParamValidators}
import org.apache.spark.ml.param.shared.{HasLabelCol, HasPredictionCol, HasWeightCol}
import org.apache.spark.ml.util._
import org.apache.spark.mllib.evaluation.RegressionMetrics
import org.apache.spark.sql.{Dataset, Row}
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.{DoubleType, FloatType}
/**
* Evaluator for regression, which expects input columns prediction, label and
* an optional weight column.
*/
@Since("1.4.0")
final class RegressionEvaluator @Since("1.4.0") (@Since("1.4.0") override val uid: String)
extends Evaluator with HasPredictionCol with HasLabelCol
with HasWeightCol with DefaultParamsWritable {
@Since("1.4.0")
def this() = this(Identifiable.randomUID("regEval"))
/**
* Param for metric name in evaluation. Supports:
* - `"rmse"` (default): root mean squared error
* - `"mse"`: mean squared error
* - `"r2"`: R^2^ metric
* - `"mae"`: mean absolute error
* - `"var"`: explained variance
*
* @group param
*/
@Since("1.4.0")
val metricName: Param[String] = {
val allowedParams = ParamValidators.inArray(Array("mse", "rmse", "r2", "mae", "var"))
new Param(this, "metricName", "metric name in evaluation (mse|rmse|r2|mae|var)", allowedParams)
}
/** @group getParam */
@Since("1.4.0")
def getMetricName: String = $(metricName)
/** @group setParam */
@Since("1.4.0")
def setMetricName(value: String): this.type = set(metricName, value)
/**
* param for whether the regression is through the origin.
* Default: false.
* @group expertParam
*/
@Since("3.0.0")
val throughOrigin: BooleanParam = new BooleanParam(this, "throughOrigin",
"Whether the regression is through the origin.")
/** @group expertGetParam */
@Since("3.0.0")
def getThroughOrigin: Boolean = $(throughOrigin)
/** @group expertSetParam */
@Since("3.0.0")
def setThroughOrigin(value: Boolean): this.type = set(throughOrigin, value)
/** @group setParam */
@Since("1.4.0")
def setPredictionCol(value: String): this.type = set(predictionCol, value)
/** @group setParam */
@Since("1.4.0")
def setLabelCol(value: String): this.type = set(labelCol, value)
/** @group setParam */
@Since("3.0.0")
def setWeightCol(value: String): this.type = set(weightCol, value)
setDefault(metricName -> "rmse", throughOrigin -> false)
@Since("2.0.0")
override def evaluate(dataset: Dataset[_]): Double = {
val metrics = getMetrics(dataset)
$(metricName) match {
case "rmse" => metrics.rootMeanSquaredError
case "mse" => metrics.meanSquaredError
case "r2" => metrics.r2
case "mae" => metrics.meanAbsoluteError
case "var" => metrics.explainedVariance
}
}
/**
* Get a RegressionMetrics, which can be used to get regression
* metrics such as rootMeanSquaredError, meanSquaredError, etc.
*
* @param dataset a dataset that contains labels/observations and predictions.
* @return RegressionMetrics
*/
@Since("3.1.0")
def getMetrics(dataset: Dataset[_]): RegressionMetrics = {
val schema = dataset.schema
SchemaUtils.checkColumnTypes(schema, $(predictionCol), Seq(DoubleType, FloatType))
SchemaUtils.checkNumericType(schema, $(labelCol))
val predictionAndLabelsWithWeights = dataset
.select(
col($(predictionCol)).cast(DoubleType),
col($(labelCol)).cast(DoubleType),
DatasetUtils.checkNonNegativeWeights(get(weightCol))
).rdd.map { case Row(prediction: Double, label: Double, weight: Double) =>
(prediction, label, weight)
}
new RegressionMetrics(predictionAndLabelsWithWeights, $(throughOrigin))
}
@Since("1.4.0")
override def isLargerBetter: Boolean = $(metricName) match {
case "r2" | "var" => true
case _ => false
}
@Since("1.5.0")
override def copy(extra: ParamMap): RegressionEvaluator = defaultCopy(extra)
@Since("3.0.0")
override def toString: String = {
s"RegressionEvaluator: uid=$uid, metricName=${$(metricName)}, " +
s"throughOrigin=${$(throughOrigin)}"
}
}
@Since("1.6.0")
object RegressionEvaluator extends DefaultParamsReadable[RegressionEvaluator] {
@Since("1.6.0")
override def load(path: String): RegressionEvaluator = super.load(path)
}
相关信息
相关文章
spark BinaryClassificationEvaluator 源码
spark MulticlassClassificationEvaluator 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦