spark StructuredSessionization 源码
spark StructuredSessionization 代码
文件路径:/examples/src/main/scala/org/apache/spark/examples/sql/streaming/StructuredSessionization.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples.sql.streaming
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.{count, session_window}
/**
* Counts words in UTF8 encoded, '\n' delimited text received from the network.
*
* Usage: StructuredSessionization <hostname> <port>
* <hostname> and <port> describe the TCP server that Structured Streaming
* would connect to receive data.
*
* To run this on your local machine, you need to first run a Netcat server
* `$ nc -lk 9999`
* and then run the example
* `$ bin/run-example sql.streaming.StructuredSessionization
* localhost 9999`
*/
object StructuredSessionization {
def main(args: Array[String]): Unit = {
if (args.length < 2) {
System.err.println("Usage: StructuredSessionization <hostname> <port>")
System.exit(1)
}
val host = args(0)
val port = args(1).toInt
val spark = SparkSession
.builder
.appName("StructuredSessionization")
.getOrCreate()
import spark.implicits._
// Create DataFrame representing the stream of input lines from connection to host:port
val lines = spark.readStream
.format("socket")
.option("host", host)
.option("port", port)
.option("includeTimestamp", true)
.load()
// Split the lines into words, retaining timestamps
// split() splits each line into an array, and explode() turns the array into multiple rows
// treat words as sessionId of events
val events = lines
.selectExpr("explode(split(value, ' ')) AS sessionId", "timestamp AS eventTime")
// Sessionize the events. Track number of events, start and end timestamps of session,
// and report session updates.
val sessionUpdates = events
.groupBy(session_window($"eventTime", "10 seconds") as Symbol("session"), $"sessionId")
.agg(count("*").as("numEvents"))
.selectExpr("sessionId", "CAST(session.start AS LONG)", "CAST(session.end AS LONG)",
"CAST(session.end AS LONG) - CAST(session.start AS LONG) AS durationMs",
"numEvents")
// Start running the query that prints the session updates to the console
val query = sessionUpdates
.writeStream
.outputMode("update")
.format("console")
.start()
query.awaitTermination()
}
}
// scalastyle:on println
相关信息
相关文章
spark StructuredComplexSessionization 源码
spark StructuredKafkaWordCount 源码
spark StructuredKerberizedKafkaWordCount 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦