spark StructuredKerberizedKafkaWordCount 源码
spark StructuredKerberizedKafkaWordCount 代码
文件路径:/examples/src/main/scala/org/apache/spark/examples/sql/streaming/StructuredKerberizedKafkaWordCount.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples.sql.streaming
import java.util.UUID
import org.apache.kafka.common.security.auth.SecurityProtocol
import org.apache.spark.sql.SparkSession
/**
* Consumes messages from one or more topics in Kafka and does wordcount.
* Usage: StructuredKerberizedKafkaWordCount <bootstrap-servers> <subscribe-type> <topics>
* [<checkpoint-location>]
* <bootstrap-servers> The Kafka "bootstrap.servers" configuration. A
* comma-separated list of host:port.
* <subscribe-type> There are three kinds of type, i.e. 'assign', 'subscribe',
* 'subscribePattern'.
* |- <assign> Specific TopicPartitions to consume. Json string
* | {"topicA":[0,1],"topicB":[2,4]}.
* |- <subscribe> The topic list to subscribe. A comma-separated list of
* | topics.
* |- <subscribePattern> The pattern used to subscribe to topic(s).
* | Java regex string.
* |- Only one of "assign, "subscribe" or "subscribePattern" options can be
* | specified for Kafka source.
* <topics> Different value format depends on the value of 'subscribe-type'.
* <checkpoint-location> Directory in which to create checkpoints. If not
* provided, defaults to a randomized directory in /tmp.
*
* Example:
* Yarn client:
* $ bin/run-example --files ${jaas_path}/kafka_jaas.conf,${keytab_path}/kafka.service.keytab \
* --driver-java-options "-Djava.security.auth.login.config=${path}/kafka_driver_jaas.conf" \
* --conf \
* "spark.executor.extraJavaOptions=-Djava.security.auth.login.config=./kafka_jaas.conf" \
* --master yarn
* sql.streaming.StructuredKerberizedKafkaWordCount broker1-host:port,broker2-host:port \
* subscribe topic1,topic2
* Yarn cluster:
* $ bin/run-example --files \
* ${jaas_path}/kafka_jaas.conf,${keytab_path}/kafka.service.keytab,${krb5_path}/krb5.conf \
* --driver-java-options \
* "-Djava.security.auth.login.config=./kafka_jaas.conf \
* -Djava.security.krb5.conf=./krb5.conf" \
* --conf \
* "spark.executor.extraJavaOptions=-Djava.security.auth.login.config=./kafka_jaas.conf" \
* --master yarn --deploy-mode cluster \
* sql.streaming.StructuredKerberizedKafkaWordCount broker1-host:port,broker2-host:port \
* subscribe topic1,topic2
*
* kafka_jaas.conf can manually create, template as:
* KafkaClient {
* com.sun.security.auth.module.Krb5LoginModule required
* keyTab="./kafka.service.keytab"
* useKeyTab=true
* storeKey=true
* useTicketCache=false
* serviceName="kafka"
* principal="kafka/host@EXAMPLE.COM";
* };
* kafka_driver_jaas.conf (used by yarn client) and kafka_jaas.conf are basically the same
* except for some differences at 'keyTab'. In kafka_driver_jaas.conf, 'keyTab' should be
* "${keytab_path}/kafka.service.keytab".
* In addition, for IBM JVMs, please use 'com.ibm.security.auth.module.Krb5LoginModule'
* instead of 'com.sun.security.auth.module.Krb5LoginModule'.
*
* Note that this example uses SASL_PLAINTEXT for simplicity; however,
* SASL_PLAINTEXT has no SSL encryption and likely be less secure. Please consider
* using SASL_SSL in production.
*/
object StructuredKerberizedKafkaWordCount {
def main(args: Array[String]): Unit = {
if (args.length < 3) {
System.err.println("Usage: StructuredKerberizedKafkaWordCount <bootstrap-servers> " +
"<subscribe-type> <topics> [<checkpoint-location>]")
System.exit(1)
}
val Array(bootstrapServers, subscribeType, topics, _*) = args
val checkpointLocation =
if (args.length > 3) args(3) else "/tmp/temporary-" + UUID.randomUUID.toString
val spark = SparkSession
.builder
.appName("StructuredKerberizedKafkaWordCount")
.getOrCreate()
import spark.implicits._
// Create DataSet representing the stream of input lines from kafka
val lines = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", bootstrapServers)
.option(subscribeType, topics)
.option("kafka.security.protocol", SecurityProtocol.SASL_PLAINTEXT.name)
.load()
.selectExpr("CAST(value AS STRING)")
.as[String]
// Generate running word count
val wordCounts = lines.flatMap(_.split(" ")).groupBy("value").count()
// Start running the query that prints the running counts to the console
val query = wordCounts.writeStream
.outputMode("complete")
.format("console")
.option("checkpointLocation", checkpointLocation)
.start()
query.awaitTermination()
}
}
相关信息
相关文章
spark StructuredComplexSessionization 源码
spark StructuredKafkaWordCount 源码
spark StructuredNetworkWordCount 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦