kafka KStreamKTableJoinProcessor 源码

  • 2022-10-20
  • 浏览 (228)

kafka KStreamKTableJoinProcessor 代码

文件路径:/streams/src/main/java/org/apache/kafka/streams/kstream/internals/KStreamKTableJoinProcessor.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.kafka.streams.kstream.internals;

import org.apache.kafka.common.metrics.Sensor;
import org.apache.kafka.streams.kstream.KeyValueMapper;
import org.apache.kafka.streams.kstream.ValueJoinerWithKey;
import org.apache.kafka.streams.processor.api.ContextualProcessor;
import org.apache.kafka.streams.processor.api.ProcessorContext;
import org.apache.kafka.streams.processor.api.Record;
import org.apache.kafka.streams.processor.api.RecordMetadata;
import org.apache.kafka.streams.processor.internals.metrics.StreamsMetricsImpl;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import static org.apache.kafka.streams.processor.internals.metrics.TaskMetrics.droppedRecordsSensor;
import static org.apache.kafka.streams.state.ValueAndTimestamp.getValueOrNull;

class KStreamKTableJoinProcessor<K1, K2, V1, V2, VOut> extends ContextualProcessor<K1, V1, K1, VOut> {
    private static final Logger LOG = LoggerFactory.getLogger(KStreamKTableJoin.class);

    private final KTableValueGetter<K2, V2> valueGetter;
    private final KeyValueMapper<? super K1, ? super V1, ? extends K2> keyMapper;
    private final ValueJoinerWithKey<? super K1, ? super V1, ? super V2, ? extends VOut> joiner;
    private final boolean leftJoin;
    private Sensor droppedRecordsSensor;

    KStreamKTableJoinProcessor(final KTableValueGetter<K2, V2> valueGetter,
                               final KeyValueMapper<? super K1, ? super V1, ? extends K2> keyMapper,
                               final ValueJoinerWithKey<? super K1, ? super V1, ? super V2, ? extends VOut> joiner,
                               final boolean leftJoin) {
        this.valueGetter = valueGetter;
        this.keyMapper = keyMapper;
        this.joiner = joiner;
        this.leftJoin = leftJoin;
    }

    @Override
    public void init(final ProcessorContext<K1, VOut> context) {
        super.init(context);
        final StreamsMetricsImpl metrics = (StreamsMetricsImpl) context.metrics();
        droppedRecordsSensor = droppedRecordsSensor(Thread.currentThread().getName(), context.taskId().toString(), metrics);
        valueGetter.init(context);
    }

    @Override
    public void process(final Record<K1, V1> record) {
        // we do join iff the join keys are equal, thus, if {@code keyMapper} returns {@code null} we
        // cannot join and just ignore the record. Note for KTables, this is the same as having a null key
        // since keyMapper just returns the key, but for GlobalKTables we can have other keyMappers
        //
        // we also ignore the record if value is null, because in a key-value data model a null-value indicates
        // an empty message (ie, there is nothing to be joined) -- this contrast SQL NULL semantics
        // furthermore, on left/outer joins 'null' in ValueJoiner#apply() indicates a missing record --
        // thus, to be consistent and to avoid ambiguous null semantics, null values are ignored
        final K2 mappedKey = keyMapper.apply(record.key(), record.value());
        if (mappedKey == null || record.value() == null) {
            if (context().recordMetadata().isPresent()) {
                final RecordMetadata recordMetadata = context().recordMetadata().get();
                LOG.warn(
                    "Skipping record due to null join key or value. "
                        + "topic=[{}] partition=[{}] offset=[{}]",
                    recordMetadata.topic(), recordMetadata.partition(), recordMetadata.offset()
                );
            } else {
                LOG.warn(
                    "Skipping record due to null join key or value. Topic, partition, and offset not known."
                );
            }
            droppedRecordsSensor.record();
        } else {
            final V2 value2 = getValueOrNull(valueGetter.get(mappedKey));
            if (leftJoin || value2 != null) {
                context().forward(record.withValue(joiner.apply(record.key(), record.value(), value2)));
            }
        }
    }

    @Override
    public void close() {
        valueGetter.close();
    }
}

相关信息

kafka 源码目录

相关文章

kafka AbstractKStreamTimeWindowAggregateProcessor 源码

kafka AbstractStream 源码

kafka BranchedInternal 源码

kafka BranchedKStreamImpl 源码

kafka Change 源码

kafka ChangedDeserializer 源码

kafka ChangedSerializer 源码

kafka CogroupedKStreamImpl 源码

kafka CogroupedStreamAggregateBuilder 源码

kafka ConsumedInternal 源码

0  赞