kafka KStreamKTableJoinProcessor 源码
kafka KStreamKTableJoinProcessor 代码
文件路径:/streams/src/main/java/org/apache/kafka/streams/kstream/internals/KStreamKTableJoinProcessor.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.kafka.streams.kstream.internals;
import org.apache.kafka.common.metrics.Sensor;
import org.apache.kafka.streams.kstream.KeyValueMapper;
import org.apache.kafka.streams.kstream.ValueJoinerWithKey;
import org.apache.kafka.streams.processor.api.ContextualProcessor;
import org.apache.kafka.streams.processor.api.ProcessorContext;
import org.apache.kafka.streams.processor.api.Record;
import org.apache.kafka.streams.processor.api.RecordMetadata;
import org.apache.kafka.streams.processor.internals.metrics.StreamsMetricsImpl;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import static org.apache.kafka.streams.processor.internals.metrics.TaskMetrics.droppedRecordsSensor;
import static org.apache.kafka.streams.state.ValueAndTimestamp.getValueOrNull;
class KStreamKTableJoinProcessor<K1, K2, V1, V2, VOut> extends ContextualProcessor<K1, V1, K1, VOut> {
private static final Logger LOG = LoggerFactory.getLogger(KStreamKTableJoin.class);
private final KTableValueGetter<K2, V2> valueGetter;
private final KeyValueMapper<? super K1, ? super V1, ? extends K2> keyMapper;
private final ValueJoinerWithKey<? super K1, ? super V1, ? super V2, ? extends VOut> joiner;
private final boolean leftJoin;
private Sensor droppedRecordsSensor;
KStreamKTableJoinProcessor(final KTableValueGetter<K2, V2> valueGetter,
final KeyValueMapper<? super K1, ? super V1, ? extends K2> keyMapper,
final ValueJoinerWithKey<? super K1, ? super V1, ? super V2, ? extends VOut> joiner,
final boolean leftJoin) {
this.valueGetter = valueGetter;
this.keyMapper = keyMapper;
this.joiner = joiner;
this.leftJoin = leftJoin;
}
@Override
public void init(final ProcessorContext<K1, VOut> context) {
super.init(context);
final StreamsMetricsImpl metrics = (StreamsMetricsImpl) context.metrics();
droppedRecordsSensor = droppedRecordsSensor(Thread.currentThread().getName(), context.taskId().toString(), metrics);
valueGetter.init(context);
}
@Override
public void process(final Record<K1, V1> record) {
// we do join iff the join keys are equal, thus, if {@code keyMapper} returns {@code null} we
// cannot join and just ignore the record. Note for KTables, this is the same as having a null key
// since keyMapper just returns the key, but for GlobalKTables we can have other keyMappers
//
// we also ignore the record if value is null, because in a key-value data model a null-value indicates
// an empty message (ie, there is nothing to be joined) -- this contrast SQL NULL semantics
// furthermore, on left/outer joins 'null' in ValueJoiner#apply() indicates a missing record --
// thus, to be consistent and to avoid ambiguous null semantics, null values are ignored
final K2 mappedKey = keyMapper.apply(record.key(), record.value());
if (mappedKey == null || record.value() == null) {
if (context().recordMetadata().isPresent()) {
final RecordMetadata recordMetadata = context().recordMetadata().get();
LOG.warn(
"Skipping record due to null join key or value. "
+ "topic=[{}] partition=[{}] offset=[{}]",
recordMetadata.topic(), recordMetadata.partition(), recordMetadata.offset()
);
} else {
LOG.warn(
"Skipping record due to null join key or value. Topic, partition, and offset not known."
);
}
droppedRecordsSensor.record();
} else {
final V2 value2 = getValueOrNull(valueGetter.get(mappedKey));
if (leftJoin || value2 != null) {
context().forward(record.withValue(joiner.apply(record.key(), record.value(), value2)));
}
}
}
@Override
public void close() {
valueGetter.close();
}
}
相关信息
相关文章
kafka AbstractKStreamTimeWindowAggregateProcessor 源码
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦