spark JavaStructuredSessionization 源码
spark JavaStructuredSessionization 代码
文件路径:/examples/src/main/java/org/apache/spark/examples/sql/streaming/JavaStructuredSessionization.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.sql.streaming;
import org.apache.spark.sql.*;
import org.apache.spark.sql.streaming.StreamingQuery;
import static org.apache.spark.sql.functions.*;
/**
* Counts words in UTF8 encoded, '\n' delimited text received from the network.
* <p>
* Usage: JavaStructuredSessionization <hostname> <port>
* <hostname> and <port> describe the TCP server that Structured Streaming
* would connect to receive data.
* <p>
* To run this on your local machine, you need to first run a Netcat server
* `$ nc -lk 9999`
* and then run the example
* `$ bin/run-example sql.streaming.JavaStructuredSessionization
* localhost 9999`
*/
public final class JavaStructuredSessionization {
public static void main(String[] args) throws Exception {
if (args.length < 2) {
System.err.println("Usage: JavaStructuredSessionization <hostname> <port>");
System.exit(1);
}
String host = args[0];
int port = Integer.parseInt(args[1]);
SparkSession spark = SparkSession
.builder()
.appName("JavaStructuredSessionization")
.getOrCreate();
// Create DataFrame representing the stream of input lines from connection to host:port
Dataset<Row> lines = spark
.readStream()
.format("socket")
.option("host", host)
.option("port", port)
.option("includeTimestamp", true)
.load();
// Split the lines into words, retaining timestamps
// split() splits each line into an array, and explode() turns the array into multiple rows
// treat words as sessionId of events
Dataset<Row> events = lines
.selectExpr("explode(split(value, ' ')) AS sessionId", "timestamp AS eventTime");
// Sessionize the events. Track number of events, start and end timestamps of session,
// and report session updates.
Dataset<Row> sessionUpdates = events
.groupBy(session_window(col("eventTime"), "10 seconds").as("session"), col("sessionId"))
.agg(count("*").as("numEvents"))
.selectExpr("sessionId", "CAST(session.start AS LONG)", "CAST(session.end AS LONG)",
"CAST(session.end AS LONG) - CAST(session.start AS LONG) AS durationMs",
"numEvents");
// Start running the query that prints the session updates to the console
StreamingQuery query = sessionUpdates
.writeStream()
.outputMode("update")
.format("console")
.start();
query.awaitTermination();
}
}
相关信息
相关文章
spark JavaStructuredComplexSessionization 源码
spark JavaStructuredKafkaWordCount 源码
spark JavaStructuredKerberizedKafkaWordCount 源码
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦