spark JavaStructuredNetworkWordCountWindowed 源码
spark JavaStructuredNetworkWordCountWindowed 代码
文件路径:/examples/src/main/java/org/apache/spark/examples/sql/streaming/JavaStructuredNetworkWordCountWindowed.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.sql.streaming;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.sql.*;
import org.apache.spark.sql.streaming.StreamingQuery;
import scala.Tuple2;
import java.sql.Timestamp;
import java.util.ArrayList;
import java.util.List;
/**
* Counts words in UTF8 encoded, '\n' delimited text received from the network over a
* sliding window of configurable duration. Each line from the network is tagged
* with a timestamp that is used to determine the windows into which it falls.
*
* Usage: JavaStructuredNetworkWordCountWindowed <hostname> <port> <window duration>
* [<slide duration>]
* <hostname> and <port> describe the TCP server that Structured Streaming
* would connect to receive data.
* <window duration> gives the size of window, specified as integer number of seconds
* <slide duration> gives the amount of time successive windows are offset from one another,
* given in the same units as above. <slide duration> should be less than or equal to
* <window duration>. If the two are equal, successive windows have no overlap. If
* <slide duration> is not provided, it defaults to <window duration>.
*
* To run this on your local machine, you need to first run a Netcat server
* `$ nc -lk 9999`
* and then run the example
* `$ bin/run-example sql.streaming.JavaStructuredNetworkWordCountWindowed
* localhost 9999 <window duration in seconds> [<slide duration in seconds>]`
*
* One recommended <window duration>, <slide duration> pair is 10, 5
*/
public final class JavaStructuredNetworkWordCountWindowed {
public static void main(String[] args) throws Exception {
if (args.length < 3) {
System.err.println("Usage: JavaStructuredNetworkWordCountWindowed <hostname> <port>" +
" <window duration in seconds> [<slide duration in seconds>]");
System.exit(1);
}
String host = args[0];
int port = Integer.parseInt(args[1]);
int windowSize = Integer.parseInt(args[2]);
int slideSize = (args.length == 3) ? windowSize : Integer.parseInt(args[3]);
if (slideSize > windowSize) {
System.err.println("<slide duration> must be less than or equal to <window duration>");
}
String windowDuration = windowSize + " seconds";
String slideDuration = slideSize + " seconds";
SparkSession spark = SparkSession
.builder()
.appName("JavaStructuredNetworkWordCountWindowed")
.getOrCreate();
// Create DataFrame representing the stream of input lines from connection to host:port
Dataset<Row> lines = spark
.readStream()
.format("socket")
.option("host", host)
.option("port", port)
.option("includeTimestamp", true)
.load();
// Split the lines into words, retaining timestamps
Dataset<Row> words = lines
.as(Encoders.tuple(Encoders.STRING(), Encoders.TIMESTAMP()))
.flatMap((FlatMapFunction<Tuple2<String, Timestamp>, Tuple2<String, Timestamp>>) t -> {
List<Tuple2<String, Timestamp>> result = new ArrayList<>();
for (String word : t._1.split(" ")) {
result.add(new Tuple2<>(word, t._2));
}
return result.iterator();
},
Encoders.tuple(Encoders.STRING(), Encoders.TIMESTAMP())
).toDF("word", "timestamp");
// Group the data by window and word and compute the count of each group
Dataset<Row> windowedCounts = words.groupBy(
functions.window(words.col("timestamp"), windowDuration, slideDuration),
words.col("word")
).count().orderBy("window");
// Start running the query that prints the windowed word counts to the console
StreamingQuery query = windowedCounts.writeStream()
.outputMode("complete")
.format("console")
.option("truncate", "false")
.start();
query.awaitTermination();
}
}
相关信息
相关文章
spark JavaStructuredComplexSessionization 源码
spark JavaStructuredKafkaWordCount 源码
spark JavaStructuredKerberizedKafkaWordCount 源码
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦