kafka KTableReduce 源码

  • 2022-10-20
  • 浏览 (206)

kafka KTableReduce 代码

文件路径:/streams/src/main/java/org/apache/kafka/streams/kstream/internals/KTableReduce.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.kafka.streams.kstream.internals;

import org.apache.kafka.streams.errors.StreamsException;
import org.apache.kafka.streams.kstream.Reducer;
import org.apache.kafka.streams.processor.api.Processor;
import org.apache.kafka.streams.processor.api.ProcessorContext;
import org.apache.kafka.streams.processor.api.Record;
import org.apache.kafka.streams.state.TimestampedKeyValueStore;
import org.apache.kafka.streams.state.ValueAndTimestamp;

import static org.apache.kafka.streams.state.ValueAndTimestamp.getValueOrNull;

public class KTableReduce<K, V> implements KTableProcessorSupplier<K, V, K, V> {

    private final String storeName;
    private final Reducer<V> addReducer;
    private final Reducer<V> removeReducer;

    private boolean sendOldValues = false;

    KTableReduce(final String storeName, final Reducer<V> addReducer, final Reducer<V> removeReducer) {
        this.storeName = storeName;
        this.addReducer = addReducer;
        this.removeReducer = removeReducer;
    }

    @Override
    public boolean enableSendingOldValues(final boolean forceMaterialization) {
        // Reduce is always materialized:
        sendOldValues = true;
        return true;
    }

    @Override
    public Processor<K, Change<V>, K, Change<V>> get() {
        return new KTableReduceProcessor();
    }

    private class KTableReduceProcessor implements Processor<K, Change<V>, K, Change<V>> {

        private TimestampedKeyValueStore<K, V> store;
        private TimestampedTupleForwarder<K, V> tupleForwarder;

        @SuppressWarnings("unchecked")
        @Override
        public void init(final ProcessorContext<K, Change<V>> context) {
            store = (TimestampedKeyValueStore<K, V>) context.getStateStore(storeName);
            tupleForwarder = new TimestampedTupleForwarder<>(
                store,
                context,
                new TimestampedCacheFlushListener<>(context),
                sendOldValues);
        }

        /**
         * @throws StreamsException if key is null
         */
        @Override
        public void process(final Record<K, Change<V>> record) {
            // the keys should never be null
            if (record.key() == null) {
                throw new StreamsException("Record key for KTable reduce operator with state " + storeName + " should not be null.");
            }

            final ValueAndTimestamp<V> oldAggAndTimestamp = store.get(record.key());
            final V oldAgg = getValueOrNull(oldAggAndTimestamp);
            final V intermediateAgg;
            long newTimestamp;

            // first try to remove the old value
            if (record.value().oldValue != null && oldAgg != null) {
                intermediateAgg = removeReducer.apply(oldAgg, record.value().oldValue);
                newTimestamp = Math.max(record.timestamp(), oldAggAndTimestamp.timestamp());
            } else {
                intermediateAgg = oldAgg;
                newTimestamp = record.timestamp();
            }

            // then try to add the new value
            final V newAgg;
            if (record.value().newValue != null) {
                if (intermediateAgg == null) {
                    newAgg = record.value().newValue;
                } else {
                    newAgg = addReducer.apply(intermediateAgg, record.value().newValue);
                    newTimestamp = Math.max(record.timestamp(), oldAggAndTimestamp.timestamp());
                }
            } else {
                newAgg = intermediateAgg;
            }

            // update the store with the new value
            store.put(record.key(), ValueAndTimestamp.make(newAgg, newTimestamp));
            tupleForwarder.maybeForward(
                record.withValue(new Change<>(newAgg, sendOldValues ? oldAgg : null))
                    .withTimestamp(newTimestamp));
        }
    }

    @Override
    public KTableValueGetterSupplier<K, V> view() {
        return new KTableMaterializedValueGetterSupplier<>(storeName);
    }
}

相关信息

kafka 源码目录

相关文章

kafka AbstractKStreamTimeWindowAggregateProcessor 源码

kafka AbstractStream 源码

kafka BranchedInternal 源码

kafka BranchedKStreamImpl 源码

kafka Change 源码

kafka ChangedDeserializer 源码

kafka ChangedSerializer 源码

kafka CogroupedKStreamImpl 源码

kafka CogroupedStreamAggregateBuilder 源码

kafka ConsumedInternal 源码

0  赞