kafka KStreamKStreamSelfJoin 源码
kafka KStreamKStreamSelfJoin 代码
文件路径:/streams/src/main/java/org/apache/kafka/streams/kstream/internals/KStreamKStreamSelfJoin.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.kafka.streams.kstream.internals;
import static org.apache.kafka.streams.processor.internals.metrics.TaskMetrics.droppedRecordsSensor;
import org.apache.kafka.common.metrics.Sensor;
import org.apache.kafka.streams.KeyValue;
import org.apache.kafka.streams.kstream.ValueJoinerWithKey;
import org.apache.kafka.streams.kstream.internals.KStreamImplJoin.TimeTracker;
import org.apache.kafka.streams.processor.api.ContextualProcessor;
import org.apache.kafka.streams.processor.api.Processor;
import org.apache.kafka.streams.processor.api.ProcessorContext;
import org.apache.kafka.streams.processor.api.ProcessorSupplier;
import org.apache.kafka.streams.processor.api.Record;
import org.apache.kafka.streams.processor.internals.metrics.StreamsMetricsImpl;
import org.apache.kafka.streams.state.WindowStore;
import org.apache.kafka.streams.state.WindowStoreIterator;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
class KStreamKStreamSelfJoin<K, V1, V2, VOut> implements ProcessorSupplier<K, V1, K, VOut> {
private static final Logger LOG = LoggerFactory.getLogger(KStreamKStreamSelfJoin.class);
private final String windowName;
private final long joinThisBeforeMs;
private final long joinThisAfterMs;
private final long joinOtherBeforeMs;
private final long joinOtherAfterMs;
private final ValueJoinerWithKey<? super K, ? super V1, ? super V2, ? extends VOut> joinerThis;
private final TimeTracker sharedTimeTracker;
KStreamKStreamSelfJoin(
final String windowName,
final JoinWindowsInternal windows,
final ValueJoinerWithKey<? super K, ? super V1, ? super V2, ? extends VOut> joinerThis,
final TimeTracker sharedTimeTracker) {
this.windowName = windowName;
this.joinThisBeforeMs = windows.beforeMs;
this.joinThisAfterMs = windows.afterMs;
this.joinOtherBeforeMs = windows.afterMs;
this.joinOtherAfterMs = windows.beforeMs;
this.joinerThis = joinerThis;
this.sharedTimeTracker = sharedTimeTracker;
}
@Override
public Processor<K, V1, K, VOut> get() {
return new KStreamKStreamSelfJoinProcessor();
}
private class KStreamKStreamSelfJoinProcessor extends ContextualProcessor<K, V1, K, VOut> {
private WindowStore<K, V2> windowStore;
private Sensor droppedRecordsSensor;
@Override
public void init(final ProcessorContext<K, VOut> context) {
super.init(context);
final StreamsMetricsImpl metrics = (StreamsMetricsImpl) context.metrics();
droppedRecordsSensor = droppedRecordsSensor(Thread.currentThread().getName(), context.taskId().toString(), metrics);
windowStore = context.getStateStore(windowName);
}
@SuppressWarnings("unchecked")
@Override
public void process(final Record<K, V1> record) {
if (StreamStreamJoinUtil.skipRecord(record, LOG, droppedRecordsSensor, context())) {
return;
}
final long inputRecordTimestamp = record.timestamp();
long timeFrom = Math.max(0L, inputRecordTimestamp - joinThisBeforeMs);
long timeTo = Math.max(0L, inputRecordTimestamp + joinThisAfterMs);
boolean emittedJoinWithSelf = false;
final Record selfRecord = record
.withValue(joinerThis.apply(record.key(), record.value(), (V2) record.value()))
.withTimestamp(inputRecordTimestamp);
sharedTimeTracker.advanceStreamTime(inputRecordTimestamp);
// Join current record with other
try (final WindowStoreIterator<V2> iter = windowStore.fetch(record.key(), timeFrom, timeTo)) {
while (iter.hasNext()) {
final KeyValue<Long, V2> otherRecord = iter.next();
final long otherRecordTimestamp = otherRecord.key;
// Join this with other
context().forward(
record.withValue(joinerThis.apply(
record.key(), record.value(), otherRecord.value))
.withTimestamp(Math.max(inputRecordTimestamp, otherRecordTimestamp)));
}
}
// Needs to be in a different loop to ensure correct ordering of records where
// correct ordering means it matches the output of an inner join.
timeFrom = Math.max(0L, inputRecordTimestamp - joinOtherBeforeMs);
timeTo = Math.max(0L, inputRecordTimestamp + joinOtherAfterMs);
try (final WindowStoreIterator<V2> iter2 = windowStore.fetch(record.key(), timeFrom, timeTo)) {
while (iter2.hasNext()) {
final KeyValue<Long, V2> otherRecord = iter2.next();
final long otherRecordTimestamp = otherRecord.key;
final long maxRecordTimestamp = Math.max(inputRecordTimestamp, otherRecordTimestamp);
// This is needed so that output records follow timestamp order
// Join this with self
if (inputRecordTimestamp < maxRecordTimestamp && !emittedJoinWithSelf) {
emittedJoinWithSelf = true;
context().forward(selfRecord);
}
// Join other with current record
context().forward(
record
.withValue(joinerThis.apply(record.key(), (V1) otherRecord.value, (V2) record.value()))
.withTimestamp(Math.max(inputRecordTimestamp, otherRecordTimestamp)));
}
}
// Join this with self
if (!emittedJoinWithSelf) {
context().forward(selfRecord);
}
}
}
}
相关信息
相关文章
kafka AbstractKStreamTimeWindowAggregateProcessor 源码
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦