kafka KStreamKStreamSelfJoin 源码

  • 2022-10-20
  • 浏览 (227)

kafka KStreamKStreamSelfJoin 代码

文件路径:/streams/src/main/java/org/apache/kafka/streams/kstream/internals/KStreamKStreamSelfJoin.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.kafka.streams.kstream.internals;

import static org.apache.kafka.streams.processor.internals.metrics.TaskMetrics.droppedRecordsSensor;

import org.apache.kafka.common.metrics.Sensor;
import org.apache.kafka.streams.KeyValue;
import org.apache.kafka.streams.kstream.ValueJoinerWithKey;
import org.apache.kafka.streams.kstream.internals.KStreamImplJoin.TimeTracker;
import org.apache.kafka.streams.processor.api.ContextualProcessor;
import org.apache.kafka.streams.processor.api.Processor;
import org.apache.kafka.streams.processor.api.ProcessorContext;
import org.apache.kafka.streams.processor.api.ProcessorSupplier;
import org.apache.kafka.streams.processor.api.Record;
import org.apache.kafka.streams.processor.internals.metrics.StreamsMetricsImpl;
import org.apache.kafka.streams.state.WindowStore;
import org.apache.kafka.streams.state.WindowStoreIterator;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

class KStreamKStreamSelfJoin<K, V1, V2, VOut> implements ProcessorSupplier<K, V1, K, VOut> {
    private static final Logger LOG = LoggerFactory.getLogger(KStreamKStreamSelfJoin.class);

    private final String windowName;
    private final long joinThisBeforeMs;
    private final long joinThisAfterMs;
    private final long joinOtherBeforeMs;
    private final long joinOtherAfterMs;
    private final ValueJoinerWithKey<? super K, ? super V1, ? super V2, ? extends VOut> joinerThis;

    private final TimeTracker sharedTimeTracker;

    KStreamKStreamSelfJoin(
        final String windowName,
        final JoinWindowsInternal windows,
        final ValueJoinerWithKey<? super K, ? super V1, ? super V2, ? extends VOut> joinerThis,
        final TimeTracker sharedTimeTracker) {

        this.windowName = windowName;
        this.joinThisBeforeMs = windows.beforeMs;
        this.joinThisAfterMs = windows.afterMs;
        this.joinOtherBeforeMs = windows.afterMs;
        this.joinOtherAfterMs = windows.beforeMs;
        this.joinerThis = joinerThis;
        this.sharedTimeTracker = sharedTimeTracker;
    }

    @Override
    public Processor<K, V1, K, VOut> get() {
        return new KStreamKStreamSelfJoinProcessor();
    }

    private class KStreamKStreamSelfJoinProcessor extends ContextualProcessor<K, V1, K, VOut> {
        private WindowStore<K, V2> windowStore;
        private Sensor droppedRecordsSensor;

        @Override
        public void init(final ProcessorContext<K, VOut> context) {
            super.init(context);

            final StreamsMetricsImpl metrics = (StreamsMetricsImpl) context.metrics();
            droppedRecordsSensor = droppedRecordsSensor(Thread.currentThread().getName(), context.taskId().toString(), metrics);
            windowStore = context.getStateStore(windowName);
        }

        @SuppressWarnings("unchecked")
        @Override
        public void process(final Record<K, V1> record) {
            if (StreamStreamJoinUtil.skipRecord(record, LOG, droppedRecordsSensor, context())) {
                return;
            }

            final long inputRecordTimestamp = record.timestamp();
            long timeFrom = Math.max(0L, inputRecordTimestamp - joinThisBeforeMs);
            long timeTo = Math.max(0L, inputRecordTimestamp + joinThisAfterMs);
            boolean emittedJoinWithSelf = false;
            final Record selfRecord = record
                .withValue(joinerThis.apply(record.key(), record.value(), (V2) record.value()))
                .withTimestamp(inputRecordTimestamp);
            sharedTimeTracker.advanceStreamTime(inputRecordTimestamp);

            // Join current record with other
            try (final WindowStoreIterator<V2> iter = windowStore.fetch(record.key(), timeFrom, timeTo)) {
                while (iter.hasNext()) {
                    final KeyValue<Long, V2> otherRecord = iter.next();
                    final long otherRecordTimestamp = otherRecord.key;

                    // Join this with other
                    context().forward(
                        record.withValue(joinerThis.apply(
                                record.key(), record.value(), otherRecord.value))
                            .withTimestamp(Math.max(inputRecordTimestamp, otherRecordTimestamp)));
                }
            }

            // Needs to be in a different loop to ensure correct ordering of records where
            // correct ordering means it matches the output of an inner join.
            timeFrom = Math.max(0L, inputRecordTimestamp - joinOtherBeforeMs);
            timeTo = Math.max(0L, inputRecordTimestamp + joinOtherAfterMs);
            try (final WindowStoreIterator<V2> iter2 = windowStore.fetch(record.key(), timeFrom, timeTo)) {
                while (iter2.hasNext()) {
                    final KeyValue<Long, V2> otherRecord = iter2.next();
                    final long otherRecordTimestamp = otherRecord.key;
                    final long maxRecordTimestamp = Math.max(inputRecordTimestamp, otherRecordTimestamp);

                    // This is needed so that output records follow timestamp order
                    // Join this with self
                    if (inputRecordTimestamp < maxRecordTimestamp && !emittedJoinWithSelf) {
                        emittedJoinWithSelf = true;
                        context().forward(selfRecord);
                    }

                    // Join other with current record
                    context().forward(
                        record
                            .withValue(joinerThis.apply(record.key(), (V1) otherRecord.value, (V2) record.value()))
                            .withTimestamp(Math.max(inputRecordTimestamp, otherRecordTimestamp)));
                }
            }

            // Join this with self
            if (!emittedJoinWithSelf) {
                context().forward(selfRecord);
            }
        }
    }
}

相关信息

kafka 源码目录

相关文章

kafka AbstractKStreamTimeWindowAggregateProcessor 源码

kafka AbstractStream 源码

kafka BranchedInternal 源码

kafka BranchedKStreamImpl 源码

kafka Change 源码

kafka ChangedDeserializer 源码

kafka ChangedSerializer 源码

kafka CogroupedKStreamImpl 源码

kafka CogroupedStreamAggregateBuilder 源码

kafka ConsumedInternal 源码

0  赞