kafka KGroupedTableImpl 源码

  • 2022-10-20
  • 浏览 (251)

kafka KGroupedTableImpl 代码

文件路径:/streams/src/main/java/org/apache/kafka/streams/kstream/internals/KGroupedTableImpl.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.kafka.streams.kstream.internals;

import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.common.utils.Bytes;
import org.apache.kafka.streams.kstream.Aggregator;
import org.apache.kafka.streams.kstream.Initializer;
import org.apache.kafka.streams.kstream.KGroupedTable;
import org.apache.kafka.streams.kstream.KTable;
import org.apache.kafka.streams.kstream.Materialized;
import org.apache.kafka.streams.kstream.Named;
import org.apache.kafka.streams.kstream.Reducer;
import org.apache.kafka.streams.kstream.internals.graph.GroupedTableOperationRepartitionNode;
import org.apache.kafka.streams.kstream.internals.graph.ProcessorParameters;
import org.apache.kafka.streams.kstream.internals.graph.StatefulProcessorNode;
import org.apache.kafka.streams.kstream.internals.graph.GraphNode;
import org.apache.kafka.streams.processor.api.ProcessorSupplier;
import org.apache.kafka.streams.state.KeyValueStore;

import java.util.Collections;
import java.util.Objects;
import java.util.Set;

/**
 * The implementation class of {@link KGroupedTable}.
 *
 * @param <K> the key type
 * @param <V> the value type
 */
public class KGroupedTableImpl<K, V> extends AbstractStream<K, V> implements KGroupedTable<K, V> {

    private static final String AGGREGATE_NAME = "KTABLE-AGGREGATE-";

    private static final String REDUCE_NAME = "KTABLE-REDUCE-";

    private final String userProvidedRepartitionTopicName;

    private final Initializer<Long> countInitializer = () -> 0L;

    private final Aggregator<K, V, Long> countAdder = (aggKey, value, aggregate) -> aggregate + 1L;

    private final Aggregator<K, V, Long> countSubtractor = (aggKey, value, aggregate) -> aggregate - 1L;

    private GraphNode repartitionGraphNode;

    KGroupedTableImpl(final InternalStreamsBuilder builder,
                      final String name,
                      final Set<String> subTopologySourceNodes,
                      final GroupedInternal<K, V> groupedInternal,
                      final GraphNode graphNode) {
        super(name, groupedInternal.keySerde(), groupedInternal.valueSerde(), subTopologySourceNodes, graphNode, builder);

        this.userProvidedRepartitionTopicName = groupedInternal.name();
    }

    private <VAgg> KTable<K, VAgg> doAggregate(final ProcessorSupplier<K, Change<V>, K, Change<VAgg>> aggregateSupplier,
                                         final NamedInternal named,
                                         final String functionName,
                                         final MaterializedInternal<K, VAgg, KeyValueStore<Bytes, byte[]>> materialized) {

        final String sinkName = named.suffixWithOrElseGet("-sink", builder, KStreamImpl.SINK_NAME);
        final String sourceName = named.suffixWithOrElseGet("-source", builder, KStreamImpl.SOURCE_NAME);
        final String funcName = named.orElseGenerateWithPrefix(builder, functionName);
        final String repartitionTopic = (userProvidedRepartitionTopicName != null ? userProvidedRepartitionTopicName : materialized.storeName())
            + KStreamImpl.REPARTITION_TOPIC_SUFFIX;

        if (repartitionGraphNode == null || userProvidedRepartitionTopicName == null) {
            repartitionGraphNode = createRepartitionNode(sinkName, sourceName, repartitionTopic);
        }


        // the passed in StreamsGraphNode must be the parent of the repartition node
        builder.addGraphNode(this.graphNode, repartitionGraphNode);

        final StatefulProcessorNode statefulProcessorNode = new StatefulProcessorNode<>(
            funcName,
            new ProcessorParameters<>(aggregateSupplier, funcName),
            new TimestampedKeyValueStoreMaterializer<>(materialized).materialize()
        );

        // now the repartition node must be the parent of the StateProcessorNode
        builder.addGraphNode(repartitionGraphNode, statefulProcessorNode);

        // return the KTable representation with the intermediate topic as the sources
        return new KTableImpl<>(funcName,
                                materialized.keySerde(),
                                materialized.valueSerde(),
                                Collections.singleton(sourceName),
                                materialized.queryableStoreName(),
                                aggregateSupplier,
                                statefulProcessorNode,
                                builder);
    }

    private GroupedTableOperationRepartitionNode<K, V> createRepartitionNode(final String sinkName,
                                                                             final String sourceName,
                                                                             final String topic) {

        return GroupedTableOperationRepartitionNode.<K, V>groupedTableOperationNodeBuilder()
            .withRepartitionTopic(topic)
            .withSinkName(sinkName)
            .withSourceName(sourceName)
            .withKeySerde(keySerde)
            .withValueSerde(valueSerde)
            .withNodeName(sourceName).build();
    }

    @Override
    public KTable<K, V> reduce(final Reducer<V> adder,
                               final Reducer<V> subtractor,
                               final Materialized<K, V, KeyValueStore<Bytes, byte[]>> materialized) {
        return reduce(adder, subtractor, NamedInternal.empty(), materialized);
    }

    @Override
    public KTable<K, V> reduce(final Reducer<V> adder,
                               final Reducer<V> subtractor,
                               final Named named,
                               final Materialized<K, V, KeyValueStore<Bytes, byte[]>> materialized) {
        Objects.requireNonNull(adder, "adder can't be null");
        Objects.requireNonNull(subtractor, "subtractor can't be null");
        Objects.requireNonNull(named, "named can't be null");
        Objects.requireNonNull(materialized, "materialized can't be null");
        final MaterializedInternal<K, V, KeyValueStore<Bytes, byte[]>> materializedInternal =
            new MaterializedInternal<>(materialized, builder, AGGREGATE_NAME);

        if (materializedInternal.keySerde() == null) {
            materializedInternal.withKeySerde(keySerde);
        }
        if (materializedInternal.valueSerde() == null) {
            materializedInternal.withValueSerde(valueSerde);
        }
        final ProcessorSupplier<K, Change<V>, K, Change<V>> aggregateSupplier = new KTableReduce<>(
            materializedInternal.storeName(),
            adder,
            subtractor);
        return doAggregate(aggregateSupplier, new NamedInternal(named), REDUCE_NAME, materializedInternal);
    }

    @Override
    public KTable<K, V> reduce(final Reducer<V> adder,
                               final Reducer<V> subtractor) {
        return reduce(adder, subtractor, Materialized.with(keySerde, valueSerde));
    }


    @Override
    public KTable<K, Long> count(final Materialized<K, Long, KeyValueStore<Bytes, byte[]>> materialized) {
        return count(NamedInternal.empty(), materialized);
    }

    @Override
    public KTable<K, Long> count(final Named named, final Materialized<K, Long, KeyValueStore<Bytes, byte[]>> materialized) {
        final MaterializedInternal<K, Long, KeyValueStore<Bytes, byte[]>> materializedInternal =
            new MaterializedInternal<>(materialized, builder, AGGREGATE_NAME);

        if (materializedInternal.keySerde() == null) {
            materializedInternal.withKeySerde(keySerde);
        }
        if (materializedInternal.valueSerde() == null) {
            materializedInternal.withValueSerde(Serdes.Long());
        }

        final ProcessorSupplier<K, Change<V>, K, Change<Long>> aggregateSupplier = new KTableAggregate<>(
            materializedInternal.storeName(),
            countInitializer,
            countAdder,
            countSubtractor);

        return doAggregate(aggregateSupplier, new NamedInternal(named), AGGREGATE_NAME, materializedInternal);
    }

    @Override
    public KTable<K, Long> count() {
        return count(Materialized.with(keySerde, Serdes.Long()));
    }

    @Override
    public KTable<K, Long> count(final Named named) {
        return count(named, Materialized.with(keySerde, Serdes.Long()));
    }

    @Override
    public <VAgg> KTable<K, VAgg> aggregate(final Initializer<VAgg> initializer,
                                        final Aggregator<? super K, ? super V, VAgg> adder,
                                        final Aggregator<? super K, ? super V, VAgg> subtractor,
                                        final Materialized<K, VAgg, KeyValueStore<Bytes, byte[]>> materialized) {
        return aggregate(initializer, adder, subtractor, NamedInternal.empty(), materialized);
    }

    @Override
    public <VAgg> KTable<K, VAgg> aggregate(final Initializer<VAgg> initializer,
                                        final Aggregator<? super K, ? super V, VAgg> adder,
                                        final Aggregator<? super K, ? super V, VAgg> subtractor,
                                        final Named named,
                                        final Materialized<K, VAgg, KeyValueStore<Bytes, byte[]>> materialized) {
        Objects.requireNonNull(initializer, "initializer can't be null");
        Objects.requireNonNull(adder, "adder can't be null");
        Objects.requireNonNull(subtractor, "subtractor can't be null");
        Objects.requireNonNull(named, "named can't be null");
        Objects.requireNonNull(materialized, "materialized can't be null");

        final MaterializedInternal<K, VAgg, KeyValueStore<Bytes, byte[]>> materializedInternal =
            new MaterializedInternal<>(materialized, builder, AGGREGATE_NAME);

        if (materializedInternal.keySerde() == null) {
            materializedInternal.withKeySerde(keySerde);
        }
        final ProcessorSupplier<K, Change<V>, K, Change<VAgg>> aggregateSupplier = new KTableAggregate<>(
            materializedInternal.storeName(),
            initializer,
            adder,
            subtractor);
        return doAggregate(aggregateSupplier, new NamedInternal(named), AGGREGATE_NAME, materializedInternal);
    }

    @Override
    public <VAgg> KTable<K, VAgg> aggregate(final Initializer<VAgg> initializer,
                                      final Aggregator<? super K, ? super V, VAgg> adder,
                                      final Aggregator<? super K, ? super V, VAgg> subtractor,
                                      final Named named) {
        return aggregate(initializer, adder, subtractor, named, Materialized.with(keySerde, null));
    }

    @Override
    public <VAgg> KTable<K, VAgg> aggregate(final Initializer<VAgg> initializer,
                                      final Aggregator<? super K, ? super V, VAgg> adder,
                                      final Aggregator<? super K, ? super V, VAgg> subtractor) {
        return aggregate(initializer, adder, subtractor, Materialized.with(keySerde, null));
    }

}

相关信息

kafka 源码目录

相关文章

kafka AbstractKStreamTimeWindowAggregateProcessor 源码

kafka AbstractStream 源码

kafka BranchedInternal 源码

kafka BranchedKStreamImpl 源码

kafka Change 源码

kafka ChangedDeserializer 源码

kafka ChangedSerializer 源码

kafka CogroupedKStreamImpl 源码

kafka CogroupedStreamAggregateBuilder 源码

kafka ConsumedInternal 源码

0  赞