kafka KTableKTableLeftJoin 源码

  • 2022-10-20
  • 浏览 (326)

kafka KTableKTableLeftJoin 代码

文件路径:/streams/src/main/java/org/apache/kafka/streams/kstream/internals/KTableKTableLeftJoin.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.kafka.streams.kstream.internals;

import org.apache.kafka.common.metrics.Sensor;
import org.apache.kafka.streams.kstream.ValueJoiner;
import org.apache.kafka.streams.processor.api.ContextualProcessor;
import org.apache.kafka.streams.processor.api.Processor;
import org.apache.kafka.streams.processor.api.ProcessorContext;
import org.apache.kafka.streams.processor.api.Record;
import org.apache.kafka.streams.processor.api.RecordMetadata;
import org.apache.kafka.streams.processor.internals.metrics.StreamsMetricsImpl;
import org.apache.kafka.streams.state.ValueAndTimestamp;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import static org.apache.kafka.streams.processor.internals.metrics.TaskMetrics.droppedRecordsSensor;
import static org.apache.kafka.streams.processor.internals.RecordQueue.UNKNOWN;
import static org.apache.kafka.streams.state.ValueAndTimestamp.getValueOrNull;

class KTableKTableLeftJoin<K, V1, V2, VOut> extends KTableKTableAbstractJoin<K, V1, V2, VOut> {
    private static final Logger LOG = LoggerFactory.getLogger(KTableKTableLeftJoin.class);

    KTableKTableLeftJoin(final KTableImpl<K, ?, V1> table1,
                         final KTableImpl<K, ?, V2> table2,
                         final ValueJoiner<? super V1, ? super V2, ? extends VOut> joiner) {
        super(table1, table2, joiner);
    }

    @Override
    public Processor<K, Change<V1>, K, Change<VOut>> get() {
        return new KTableKTableLeftJoinProcessor(valueGetterSupplier2.get());
    }

    @Override
    public KTableValueGetterSupplier<K, VOut> view() {
        return new KTableKTableLeftJoinValueGetterSupplier(valueGetterSupplier1, valueGetterSupplier2);
    }

    private class KTableKTableLeftJoinValueGetterSupplier extends KTableKTableAbstractJoinValueGetterSupplier<K, VOut, V1, V2> {

        KTableKTableLeftJoinValueGetterSupplier(final KTableValueGetterSupplier<K, V1> valueGetterSupplier1,
                                                final KTableValueGetterSupplier<K, V2> valueGetterSupplier2) {
            super(valueGetterSupplier1, valueGetterSupplier2);
        }

        public KTableValueGetter<K, VOut> get() {
            return new KTableKTableLeftJoinValueGetter(valueGetterSupplier1.get(), valueGetterSupplier2.get());
        }
    }


    private class KTableKTableLeftJoinProcessor extends ContextualProcessor<K, Change<V1>, K, Change<VOut>> {

        private final KTableValueGetter<K, V2> valueGetter;
        private Sensor droppedRecordsSensor;

        KTableKTableLeftJoinProcessor(final KTableValueGetter<K, V2> valueGetter) {
            this.valueGetter = valueGetter;
        }

        @Override
        public void init(final ProcessorContext<K, Change<VOut>> context) {
            super.init(context);
            droppedRecordsSensor = droppedRecordsSensor(
                Thread.currentThread().getName(),
                context.taskId().toString(),
                (StreamsMetricsImpl) context.metrics()
            );
            valueGetter.init(context);
        }

        @Override
        public void process(final Record<K, Change<V1>> record) {
            // we do join iff keys are equal, thus, if key is null we cannot join and just ignore the record
            if (record.key() == null) {
                if (context().recordMetadata().isPresent()) {
                    final RecordMetadata recordMetadata = context().recordMetadata().get();
                    LOG.warn(
                        "Skipping record due to null key. "
                            + "topic=[{}] partition=[{}] offset=[{}]",
                        recordMetadata.topic(), recordMetadata.partition(), recordMetadata.offset()
                    );
                } else {
                    LOG.warn(
                        "Skipping record due to null key. Topic, partition, and offset not known."
                    );
                }
                droppedRecordsSensor.record();
                return;
            }

            VOut newValue = null;
            final long resultTimestamp;
            VOut oldValue = null;

            final ValueAndTimestamp<V2> valueAndTimestampRight = valueGetter.get(record.key());
            final V2 value2 = getValueOrNull(valueAndTimestampRight);
            final long timestampRight;

            if (value2 == null) {
                if (record.value().newValue == null && record.value().oldValue == null) {
                    return;
                }
                timestampRight = UNKNOWN;
            } else {
                timestampRight = valueAndTimestampRight.timestamp();
            }

            resultTimestamp = Math.max(record.timestamp(), timestampRight);

            if (record.value().newValue != null) {
                newValue = joiner.apply(record.value().newValue, value2);
            }

            if (sendOldValues && record.value().oldValue != null) {
                oldValue = joiner.apply(record.value().oldValue, value2);
            }

            context().forward(record.withValue(new Change<>(newValue, oldValue)).withTimestamp(resultTimestamp));
        }

        @Override
        public void close() {
            valueGetter.close();
        }
    }

    private class KTableKTableLeftJoinValueGetter implements KTableValueGetter<K, VOut> {

        private final KTableValueGetter<K, V1> valueGetter1;
        private final KTableValueGetter<K, V2> valueGetter2;

        KTableKTableLeftJoinValueGetter(final KTableValueGetter<K, V1> valueGetter1,
                                        final KTableValueGetter<K, V2> valueGetter2) {
            this.valueGetter1 = valueGetter1;
            this.valueGetter2 = valueGetter2;
        }

        @Override
        public void init(final ProcessorContext<?, ?> context) {
            valueGetter1.init(context);
            valueGetter2.init(context);
        }

        @Override
        public ValueAndTimestamp<VOut> get(final K key) {
            final ValueAndTimestamp<V1> valueAndTimestamp1 = valueGetter1.get(key);
            final V1 value1 = getValueOrNull(valueAndTimestamp1);

            if (value1 != null) {
                final ValueAndTimestamp<V2> valueAndTimestamp2 = valueGetter2.get(key);
                final V2 value2 = getValueOrNull(valueAndTimestamp2);
                final long resultTimestamp;
                if (valueAndTimestamp2 == null) {
                    resultTimestamp = valueAndTimestamp1.timestamp();
                } else {
                    resultTimestamp = Math.max(valueAndTimestamp1.timestamp(), valueAndTimestamp2.timestamp());
                }
                return ValueAndTimestamp.make(joiner.apply(value1, value2), resultTimestamp);
            } else {
                return null;
            }
        }

        @Override
        public void close() {
            valueGetter1.close();
            valueGetter2.close();
        }
    }

}

相关信息

kafka 源码目录

相关文章

kafka AbstractKStreamTimeWindowAggregateProcessor 源码

kafka AbstractStream 源码

kafka BranchedInternal 源码

kafka BranchedKStreamImpl 源码

kafka Change 源码

kafka ChangedDeserializer 源码

kafka ChangedSerializer 源码

kafka CogroupedKStreamImpl 源码

kafka CogroupedStreamAggregateBuilder 源码

kafka ConsumedInternal 源码

0  赞