spark DataFrameStatFunctions 源码

  • 2022-10-20
  • 浏览 (247)

spark DataFrameStatFunctions 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/DataFrameStatFunctions.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql

import java.{lang => jl, util => ju}

import scala.collection.JavaConverters._

import org.apache.spark.annotation.Stable
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.execution.stat._
import org.apache.spark.sql.functions.col
import org.apache.spark.sql.types._
import org.apache.spark.util.sketch.{BloomFilter, CountMinSketch}

/**
 * Statistic functions for `DataFrame`s.
 *
 * @since 1.4.0
 */
@Stable
final class DataFrameStatFunctions private[sql](df: DataFrame) {

  /**
   * Calculates the approximate quantiles of a numerical column of a DataFrame.
   *
   * The result of this algorithm has the following deterministic bound:
   * If the DataFrame has N elements and if we request the quantile at probability `p` up to error
   * `err`, then the algorithm will return a sample `x` from the DataFrame so that the *exact* rank
   * of `x` is close to (p * N).
   * More precisely,
   *
   * {{{
   *   floor((p - err) * N) <= rank(x) <= ceil((p + err) * N)
   * }}}
   *
   * This method implements a variation of the Greenwald-Khanna algorithm (with some speed
   * optimizations).
   * The algorithm was first present in <a href="https://doi.org/10.1145/375663.375670">
   * Space-efficient Online Computation of Quantile Summaries</a> by Greenwald and Khanna.
   *
   * @param col the name of the numerical column
   * @param probabilities a list of quantile probabilities
   *   Each number must belong to [0, 1].
   *   For example 0 is the minimum, 0.5 is the median, 1 is the maximum.
   * @param relativeError The relative target precision to achieve (greater than or equal to 0).
   *   If set to zero, the exact quantiles are computed, which could be very expensive.
   *   Note that values greater than 1 are accepted but give the same result as 1.
   * @return the approximate quantiles at the given probabilities
   *
   * @note null and NaN values will be removed from the numerical column before calculation. If
   *   the dataframe is empty or the column only contains null or NaN, an empty array is returned.
   *
   * @since 2.0.0
   */
  def approxQuantile(
      col: String,
      probabilities: Array[Double],
      relativeError: Double): Array[Double] = {
    approxQuantile(Array(col), probabilities, relativeError).head
  }

  /**
   * Calculates the approximate quantiles of numerical columns of a DataFrame.
   * @see `approxQuantile(col:Str* approxQuantile)` for detailed description.
   *
   * @param cols the names of the numerical columns
   * @param probabilities a list of quantile probabilities
   *   Each number must belong to [0, 1].
   *   For example 0 is the minimum, 0.5 is the median, 1 is the maximum.
   * @param relativeError The relative target precision to achieve (greater than or equal to 0).
   *   If set to zero, the exact quantiles are computed, which could be very expensive.
   *   Note that values greater than 1 are accepted but give the same result as 1.
   * @return the approximate quantiles at the given probabilities of each column
   *
   * @note null and NaN values will be ignored in numerical columns before calculation. For
   *   columns only containing null or NaN values, an empty array is returned.
   *
   * @since 2.2.0
   */
  def approxQuantile(
      cols: Array[String],
      probabilities: Array[Double],
      relativeError: Double): Array[Array[Double]] = {
    StatFunctions.multipleApproxQuantiles(
      df.select(cols.map(col): _*),
      cols,
      probabilities,
      relativeError).map(_.toArray).toArray
  }


  /**
   * Python-friendly version of [[approxQuantile()]]
   */
  private[spark] def approxQuantile(
      cols: List[String],
      probabilities: List[Double],
      relativeError: Double): java.util.List[java.util.List[Double]] = {
    approxQuantile(cols.toArray, probabilities.toArray, relativeError)
      .map(_.toList.asJava).toList.asJava
  }

  /**
   * Calculate the sample covariance of two numerical columns of a DataFrame.
   * @param col1 the name of the first column
   * @param col2 the name of the second column
   * @return the covariance of the two columns.
   *
   * {{{
   *    val df = sc.parallelize(0 until 10).toDF("id").withColumn("rand1", rand(seed=10))
   *      .withColumn("rand2", rand(seed=27))
   *    df.stat.cov("rand1", "rand2")
   *    res1: Double = 0.065...
   * }}}
   *
   * @since 1.4.0
   */
  def cov(col1: String, col2: String): Double = {
    StatFunctions.calculateCov(df, Seq(col1, col2))
  }

  /**
   * Calculates the correlation of two columns of a DataFrame. Currently only supports the Pearson
   * Correlation Coefficient. For Spearman Correlation, consider using RDD methods found in
   * MLlib's Statistics.
   *
   * @param col1 the name of the column
   * @param col2 the name of the column to calculate the correlation against
   * @return The Pearson Correlation Coefficient as a Double.
   *
   * {{{
   *    val df = sc.parallelize(0 until 10).toDF("id").withColumn("rand1", rand(seed=10))
   *      .withColumn("rand2", rand(seed=27))
   *    df.stat.corr("rand1", "rand2")
   *    res1: Double = 0.613...
   * }}}
   *
   * @since 1.4.0
   */
  def corr(col1: String, col2: String, method: String): Double = {
    require(method == "pearson", "Currently only the calculation of the Pearson Correlation " +
      "coefficient is supported.")
    StatFunctions.pearsonCorrelation(df, Seq(col1, col2))
  }

  /**
   * Calculates the Pearson Correlation Coefficient of two columns of a DataFrame.
   *
   * @param col1 the name of the column
   * @param col2 the name of the column to calculate the correlation against
   * @return The Pearson Correlation Coefficient as a Double.
   *
   * {{{
   *    val df = sc.parallelize(0 until 10).toDF("id").withColumn("rand1", rand(seed=10))
   *      .withColumn("rand2", rand(seed=27))
   *    df.stat.corr("rand1", "rand2", "pearson")
   *    res1: Double = 0.613...
   * }}}
   *
   * @since 1.4.0
   */
  def corr(col1: String, col2: String): Double = {
    corr(col1, col2, "pearson")
  }

  /**
   * Computes a pair-wise frequency table of the given columns. Also known as a contingency table.
   * The number of distinct values for each column should be less than 1e4. At most 1e6 non-zero
   * pair frequencies will be returned.
   * The first column of each row will be the distinct values of `col1` and the column names will
   * be the distinct values of `col2`. The name of the first column will be `col1_col2`. Counts
   * will be returned as `Long`s. Pairs that have no occurrences will have zero as their counts.
   * Null elements will be replaced by "null", and back ticks will be dropped from elements if they
   * exist.
   *
   * @param col1 The name of the first column. Distinct items will make the first item of
   *             each row.
   * @param col2 The name of the second column. Distinct items will make the column names
   *             of the DataFrame.
   * @return A DataFrame containing for the contingency table.
   *
   * {{{
   *    val df = spark.createDataFrame(Seq((1, 1), (1, 2), (2, 1), (2, 1), (2, 3), (3, 2), (3, 3)))
   *      .toDF("key", "value")
   *    val ct = df.stat.crosstab("key", "value")
   *    ct.show()
   *    +---------+---+---+---+
   *    |key_value|  1|  2|  3|
   *    +---------+---+---+---+
   *    |        2|  2|  0|  1|
   *    |        1|  1|  1|  0|
   *    |        3|  0|  1|  1|
   *    +---------+---+---+---+
   * }}}
   *
   * @since 1.4.0
   */
  def crosstab(col1: String, col2: String): DataFrame = {
    StatFunctions.crossTabulate(df, col1, col2)
  }

  /**
   * Finding frequent items for columns, possibly with false positives. Using the
   * frequent element count algorithm described in
   * <a href="https://doi.org/10.1145/762471.762473">here</a>, proposed by Karp,
   * Schenker, and Papadimitriou.
   * The `support` should be greater than 1e-4.
   *
   * This function is meant for exploratory data analysis, as we make no guarantee about the
   * backward compatibility of the schema of the resulting `DataFrame`.
   *
   * @param cols the names of the columns to search frequent items in.
   * @param support The minimum frequency for an item to be considered `frequent`. Should be greater
   *                than 1e-4.
   * @return A Local DataFrame with the Array of frequent items for each column.
   *
   * {{{
   *    val rows = Seq.tabulate(100) { i =>
   *      if (i % 2 == 0) (1, -1.0) else (i, i * -1.0)
   *    }
   *    val df = spark.createDataFrame(rows).toDF("a", "b")
   *    // find the items with a frequency greater than 0.4 (observed 40% of the time) for columns
   *    // "a" and "b"
   *    val freqSingles = df.stat.freqItems(Array("a", "b"), 0.4)
   *    freqSingles.show()
   *    +-----------+-------------+
   *    |a_freqItems|  b_freqItems|
   *    +-----------+-------------+
   *    |    [1, 99]|[-1.0, -99.0]|
   *    +-----------+-------------+
   *    // find the pair of items with a frequency greater than 0.1 in columns "a" and "b"
   *    val pairDf = df.select(struct("a", "b").as("a-b"))
   *    val freqPairs = pairDf.stat.freqItems(Array("a-b"), 0.1)
   *    freqPairs.select(explode($"a-b_freqItems").as("freq_ab")).show()
   *    +----------+
   *    |   freq_ab|
   *    +----------+
   *    |  [1,-1.0]|
   *    |   ...    |
   *    +----------+
   * }}}
   *
   * @since 1.4.0
   */
  def freqItems(cols: Array[String], support: Double): DataFrame = {
    FrequentItems.singlePassFreqItems(df, cols, support)
  }

  /**
   * Finding frequent items for columns, possibly with false positives. Using the
   * frequent element count algorithm described in
   * <a href="https://doi.org/10.1145/762471.762473">here</a>, proposed by Karp,
   * Schenker, and Papadimitriou.
   * Uses a `default` support of 1%.
   *
   * This function is meant for exploratory data analysis, as we make no guarantee about the
   * backward compatibility of the schema of the resulting `DataFrame`.
   *
   * @param cols the names of the columns to search frequent items in.
   * @return A Local DataFrame with the Array of frequent items for each column.
   *
   * @since 1.4.0
   */
  def freqItems(cols: Array[String]): DataFrame = {
    FrequentItems.singlePassFreqItems(df, cols, 0.01)
  }

  /**
   * (Scala-specific) Finding frequent items for columns, possibly with false positives. Using the
   * frequent element count algorithm described in
   * <a href="https://doi.org/10.1145/762471.762473">here</a>, proposed by Karp, Schenker,
   * and Papadimitriou.
   *
   * This function is meant for exploratory data analysis, as we make no guarantee about the
   * backward compatibility of the schema of the resulting `DataFrame`.
   *
   * @param cols the names of the columns to search frequent items in.
   * @return A Local DataFrame with the Array of frequent items for each column.
   *
   * {{{
   *    val rows = Seq.tabulate(100) { i =>
   *      if (i % 2 == 0) (1, -1.0) else (i, i * -1.0)
   *    }
   *    val df = spark.createDataFrame(rows).toDF("a", "b")
   *    // find the items with a frequency greater than 0.4 (observed 40% of the time) for columns
   *    // "a" and "b"
   *    val freqSingles = df.stat.freqItems(Seq("a", "b"), 0.4)
   *    freqSingles.show()
   *    +-----------+-------------+
   *    |a_freqItems|  b_freqItems|
   *    +-----------+-------------+
   *    |    [1, 99]|[-1.0, -99.0]|
   *    +-----------+-------------+
   *    // find the pair of items with a frequency greater than 0.1 in columns "a" and "b"
   *    val pairDf = df.select(struct("a", "b").as("a-b"))
   *    val freqPairs = pairDf.stat.freqItems(Seq("a-b"), 0.1)
   *    freqPairs.select(explode($"a-b_freqItems").as("freq_ab")).show()
   *    +----------+
   *    |   freq_ab|
   *    +----------+
   *    |  [1,-1.0]|
   *    |   ...    |
   *    +----------+
   * }}}
   *
   * @since 1.4.0
   */
  def freqItems(cols: Seq[String], support: Double): DataFrame = {
    FrequentItems.singlePassFreqItems(df, cols, support)
  }

  /**
   * (Scala-specific) Finding frequent items for columns, possibly with false positives. Using the
   * frequent element count algorithm described in
   * <a href="https://doi.org/10.1145/762471.762473">here</a>, proposed by Karp, Schenker,
   * and Papadimitriou.
   * Uses a `default` support of 1%.
   *
   * This function is meant for exploratory data analysis, as we make no guarantee about the
   * backward compatibility of the schema of the resulting `DataFrame`.
   *
   * @param cols the names of the columns to search frequent items in.
   * @return A Local DataFrame with the Array of frequent items for each column.
   *
   * @since 1.4.0
   */
  def freqItems(cols: Seq[String]): DataFrame = {
    FrequentItems.singlePassFreqItems(df, cols, 0.01)
  }

  /**
   * Returns a stratified sample without replacement based on the fraction given on each stratum.
   * @param col column that defines strata
   * @param fractions sampling fraction for each stratum. If a stratum is not specified, we treat
   *                  its fraction as zero.
   * @param seed random seed
   * @tparam T stratum type
   * @return a new `DataFrame` that represents the stratified sample
   *
   * {{{
   *    val df = spark.createDataFrame(Seq((1, 1), (1, 2), (2, 1), (2, 1), (2, 3), (3, 2),
   *      (3, 3))).toDF("key", "value")
   *    val fractions = Map(1 -> 1.0, 3 -> 0.5)
   *    df.stat.sampleBy("key", fractions, 36L).show()
   *    +---+-----+
   *    |key|value|
   *    +---+-----+
   *    |  1|    1|
   *    |  1|    2|
   *    |  3|    2|
   *    +---+-----+
   * }}}
   *
   * @since 1.5.0
   */
  def sampleBy[T](col: String, fractions: Map[T, Double], seed: Long): DataFrame = {
    sampleBy(Column(col), fractions, seed)
  }

  /**
   * Returns a stratified sample without replacement based on the fraction given on each stratum.
   * @param col column that defines strata
   * @param fractions sampling fraction for each stratum. If a stratum is not specified, we treat
   *                  its fraction as zero.
   * @param seed random seed
   * @tparam T stratum type
   * @return a new `DataFrame` that represents the stratified sample
   *
   * @since 1.5.0
   */
  def sampleBy[T](col: String, fractions: ju.Map[T, jl.Double], seed: Long): DataFrame = {
    sampleBy(col, fractions.asScala.toMap.asInstanceOf[Map[T, Double]], seed)
  }

  /**
   * Returns a stratified sample without replacement based on the fraction given on each stratum.
   * @param col column that defines strata
   * @param fractions sampling fraction for each stratum. If a stratum is not specified, we treat
   *                  its fraction as zero.
   * @param seed random seed
   * @tparam T stratum type
   * @return a new `DataFrame` that represents the stratified sample
   *
   * The stratified sample can be performed over multiple columns:
   * {{{
   *    import org.apache.spark.sql.Row
   *    import org.apache.spark.sql.functions.struct
   *
   *    val df = spark.createDataFrame(Seq(("Bob", 17), ("Alice", 10), ("Nico", 8), ("Bob", 17),
   *      ("Alice", 10))).toDF("name", "age")
   *    val fractions = Map(Row("Alice", 10) -> 0.3, Row("Nico", 8) -> 1.0)
   *    df.stat.sampleBy(struct($"name", $"age"), fractions, 36L).show()
   *    +-----+---+
   *    | name|age|
   *    +-----+---+
   *    | Nico|  8|
   *    |Alice| 10|
   *    +-----+---+
   * }}}
   *
   * @since 3.0.0
   */
  def sampleBy[T](col: Column, fractions: Map[T, Double], seed: Long): DataFrame = {
    require(fractions.values.forall(p => p >= 0.0 && p <= 1.0),
      s"Fractions must be in [0, 1], but got $fractions.")
    import org.apache.spark.sql.functions.{rand, udf}
    val r = rand(seed)
    val f = udf { (stratum: Any, x: Double) =>
      x < fractions.getOrElse(stratum.asInstanceOf[T], 0.0)
    }
    df.filter(f(col, r))
  }

  /**
   * (Java-specific) Returns a stratified sample without replacement based on the fraction given
   * on each stratum.
   * @param col column that defines strata
   * @param fractions sampling fraction for each stratum. If a stratum is not specified, we treat
   *                  its fraction as zero.
   * @param seed random seed
   * @tparam T stratum type
   * @return a new `DataFrame` that represents the stratified sample
   *
   * @since 3.0.0
   */
  def sampleBy[T](col: Column, fractions: ju.Map[T, jl.Double], seed: Long): DataFrame = {
    sampleBy(col, fractions.asScala.toMap.asInstanceOf[Map[T, Double]], seed)
  }

  /**
   * Builds a Count-min Sketch over a specified column.
   *
   * @param colName name of the column over which the sketch is built
   * @param depth depth of the sketch
   * @param width width of the sketch
   * @param seed random seed
   * @return a `CountMinSketch` over column `colName`
   * @since 2.0.0
   */
  def countMinSketch(colName: String, depth: Int, width: Int, seed: Int): CountMinSketch = {
    countMinSketch(Column(colName), depth, width, seed)
  }

  /**
   * Builds a Count-min Sketch over a specified column.
   *
   * @param colName name of the column over which the sketch is built
   * @param eps relative error of the sketch
   * @param confidence confidence of the sketch
   * @param seed random seed
   * @return a `CountMinSketch` over column `colName`
   * @since 2.0.0
   */
  def countMinSketch(
      colName: String, eps: Double, confidence: Double, seed: Int): CountMinSketch = {
    countMinSketch(Column(colName), eps, confidence, seed)
  }

  /**
   * Builds a Count-min Sketch over a specified column.
   *
   * @param col the column over which the sketch is built
   * @param depth depth of the sketch
   * @param width width of the sketch
   * @param seed random seed
   * @return a `CountMinSketch` over column `colName`
   * @since 2.0.0
   */
  def countMinSketch(col: Column, depth: Int, width: Int, seed: Int): CountMinSketch = {
    countMinSketch(col, CountMinSketch.create(depth, width, seed))
  }

  /**
   * Builds a Count-min Sketch over a specified column.
   *
   * @param col the column over which the sketch is built
   * @param eps relative error of the sketch
   * @param confidence confidence of the sketch
   * @param seed random seed
   * @return a `CountMinSketch` over column `colName`
   * @since 2.0.0
   */
  def countMinSketch(col: Column, eps: Double, confidence: Double, seed: Int): CountMinSketch = {
    countMinSketch(col, CountMinSketch.create(eps, confidence, seed))
  }

  private def countMinSketch(col: Column, zero: CountMinSketch): CountMinSketch = {
    val singleCol = df.select(col)
    val colType = singleCol.schema.head.dataType

    val updater: (CountMinSketch, InternalRow) => Unit = colType match {
      // For string type, we can get bytes of our `UTF8String` directly, and call the `addBinary`
      // instead of `addString` to avoid unnecessary conversion.
      case StringType => (sketch, row) => sketch.addBinary(row.getUTF8String(0).getBytes)
      case ByteType => (sketch, row) => sketch.addLong(row.getByte(0))
      case ShortType => (sketch, row) => sketch.addLong(row.getShort(0))
      case IntegerType => (sketch, row) => sketch.addLong(row.getInt(0))
      case LongType => (sketch, row) => sketch.addLong(row.getLong(0))
      case _ =>
        throw new IllegalArgumentException(
          s"Count-min Sketch only supports string type and integral types, " +
            s"and does not support type $colType."
        )
    }

    singleCol.queryExecution.toRdd.aggregate(zero)(
      (sketch: CountMinSketch, row: InternalRow) => {
        updater(sketch, row)
        sketch
      },
      (sketch1, sketch2) => sketch1.mergeInPlace(sketch2)
    )
  }

  /**
   * Builds a Bloom filter over a specified column.
   *
   * @param colName name of the column over which the filter is built
   * @param expectedNumItems expected number of items which will be put into the filter.
   * @param fpp expected false positive probability of the filter.
   * @since 2.0.0
   */
  def bloomFilter(colName: String, expectedNumItems: Long, fpp: Double): BloomFilter = {
    buildBloomFilter(Column(colName), expectedNumItems, -1L, fpp)
  }

  /**
   * Builds a Bloom filter over a specified column.
   *
   * @param col the column over which the filter is built
   * @param expectedNumItems expected number of items which will be put into the filter.
   * @param fpp expected false positive probability of the filter.
   * @since 2.0.0
   */
  def bloomFilter(col: Column, expectedNumItems: Long, fpp: Double): BloomFilter = {
    buildBloomFilter(col, expectedNumItems, -1L, fpp)
  }

  /**
   * Builds a Bloom filter over a specified column.
   *
   * @param colName name of the column over which the filter is built
   * @param expectedNumItems expected number of items which will be put into the filter.
   * @param numBits expected number of bits of the filter.
   * @since 2.0.0
   */
  def bloomFilter(colName: String, expectedNumItems: Long, numBits: Long): BloomFilter = {
    buildBloomFilter(Column(colName), expectedNumItems, numBits, Double.NaN)
  }

  /**
   * Builds a Bloom filter over a specified column.
   *
   * @param col the column over which the filter is built
   * @param expectedNumItems expected number of items which will be put into the filter.
   * @param numBits expected number of bits of the filter.
   * @since 2.0.0
   */
  def bloomFilter(col: Column, expectedNumItems: Long, numBits: Long): BloomFilter = {
    buildBloomFilter(col, expectedNumItems, numBits, Double.NaN)
  }

  private def buildBloomFilter(col: Column, expectedNumItems: Long,
                               numBits: Long,
                               fpp: Double): BloomFilter = {
    val singleCol = df.select(col)
    val colType = singleCol.schema.head.dataType

    require(colType == StringType || colType.isInstanceOf[IntegralType],
      s"Bloom filter only supports string type and integral types, but got $colType.")

    val updater: (BloomFilter, InternalRow) => Unit = colType match {
      // For string type, we can get bytes of our `UTF8String` directly, and call the `putBinary`
      // instead of `putString` to avoid unnecessary conversion.
      case StringType => (filter, row) => filter.putBinary(row.getUTF8String(0).getBytes)
      case ByteType => (filter, row) => filter.putLong(row.getByte(0))
      case ShortType => (filter, row) => filter.putLong(row.getShort(0))
      case IntegerType => (filter, row) => filter.putLong(row.getInt(0))
      case LongType => (filter, row) => filter.putLong(row.getLong(0))
      case _ =>
        throw new IllegalArgumentException(
          s"Bloom filter only supports string type and integral types, " +
            s"and does not support type $colType."
        )
    }

    singleCol.queryExecution.toRdd.treeAggregate(null.asInstanceOf[BloomFilter])(
      (filter: BloomFilter, row: InternalRow) => {
        val theFilter =
          if (filter == null) {
            if (fpp.isNaN) {
              BloomFilter.create(expectedNumItems, numBits)
            } else {
              BloomFilter.create(expectedNumItems, fpp)
            }
          } else {
            filter
          }
        updater(theFilter, row)
        theFilter
      },
      (filter1, filter2) => {
        if (filter1 == null) {
          filter2
        } else if (filter2 == null) {
          filter1
        } else {
          filter1.mergeInPlace(filter2)
        }
      }
    )
  }
}

相关信息

spark 源码目录

相关文章

spark Column 源码

spark DataFrameNaFunctions 源码

spark DataFrameReader 源码

spark DataFrameWriter 源码

spark DataFrameWriterV2 源码

spark Dataset 源码

spark DatasetHolder 源码

spark ExperimentalMethods 源码

spark ForeachWriter 源码

spark KeyValueGroupedDataset 源码

0  赞