spark TypeUtils 源码

  • 2022-10-20
  • 浏览 (224)

spark TypeUtils 代码

文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/util/TypeUtils.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.catalyst.util

import org.apache.spark.sql.catalyst.analysis.{TypeCheckResult, TypeCoercion}
import org.apache.spark.sql.catalyst.analysis.TypeCheckResult.DataTypeMismatch
import org.apache.spark.sql.catalyst.expressions.Cast.toSQLType
import org.apache.spark.sql.catalyst.expressions.RowOrdering
import org.apache.spark.sql.errors.QueryCompilationErrors
import org.apache.spark.sql.types._

/**
 * Functions to help with checking for valid data types and value comparison of various types.
 */
object TypeUtils {

  def checkForOrderingExpr(dt: DataType, caller: String): TypeCheckResult = {
    if (RowOrdering.isOrderable(dt)) {
      TypeCheckResult.TypeCheckSuccess
    } else {
      DataTypeMismatch(
        errorSubClass = "INVALID_ORDERING_TYPE",
        Map(
          "functionName" -> caller,
          "dataType" -> toSQLType(dt)
        )
      )
    }
  }

  def checkForSameTypeInputExpr(types: Seq[DataType], caller: String): TypeCheckResult = {
    if (TypeCoercion.haveSameType(types)) {
      TypeCheckResult.TypeCheckSuccess
    } else {
      DataTypeMismatch(
        errorSubClass = "DATA_DIFF_TYPES",
        messageParameters = Map(
          "functionName" -> caller,
          "dataType" -> types.map(toSQLType).mkString("(", " or ", ")")
        )
      )
    }
  }

  def checkForMapKeyType(keyType: DataType): TypeCheckResult = {
    if (keyType.existsRecursively(_.isInstanceOf[MapType])) {
      DataTypeMismatch(
        errorSubClass = "INVALID_MAP_KEY_TYPE",
        messageParameters = Map(
          "keyType" -> toSQLType(keyType)
        )
      )
    } else {
      TypeCheckResult.TypeCheckSuccess
    }
  }

  def checkForAnsiIntervalOrNumericType(
      dt: DataType, funcName: String): TypeCheckResult = dt match {
    case _: AnsiIntervalType | NullType =>
      TypeCheckResult.TypeCheckSuccess
    case dt if dt.isInstanceOf[NumericType] => TypeCheckResult.TypeCheckSuccess
    case other => TypeCheckResult.TypeCheckFailure(
      s"function $funcName requires numeric or interval types, not ${other.catalogString}")
  }

  def getNumeric(t: DataType, exactNumericRequired: Boolean = false): Numeric[Any] = {
    if (exactNumericRequired) {
      t.asInstanceOf[NumericType].exactNumeric.asInstanceOf[Numeric[Any]]
    } else {
      t.asInstanceOf[NumericType].numeric.asInstanceOf[Numeric[Any]]
    }
  }

  @scala.annotation.tailrec
  def getInterpretedOrdering(t: DataType): Ordering[Any] = {
    t match {
      case i: AtomicType => i.ordering.asInstanceOf[Ordering[Any]]
      case a: ArrayType => a.interpretedOrdering.asInstanceOf[Ordering[Any]]
      case s: StructType => s.interpretedOrdering.asInstanceOf[Ordering[Any]]
      case udt: UserDefinedType[_] => getInterpretedOrdering(udt.sqlType)
    }
  }

  /**
   * Returns true if the equals method of the elements of the data type is implemented properly.
   * This also means that they can be safely used in collections relying on the equals method,
   * as sets or maps.
   */
  def typeWithProperEquals(dataType: DataType): Boolean = dataType match {
    case BinaryType => false
    case _: AtomicType => true
    case _ => false
  }

  def failWithIntervalType(dataType: DataType): Unit = {
    invokeOnceForInterval(dataType, forbidAnsiIntervals = false) {
      throw QueryCompilationErrors.cannotUseIntervalTypeInTableSchemaError()
    }
  }

  def invokeOnceForInterval(dataType: DataType, forbidAnsiIntervals: Boolean)(f: => Unit): Unit = {
    def isInterval(dataType: DataType): Boolean = dataType match {
      case _: AnsiIntervalType => forbidAnsiIntervals
      case CalendarIntervalType => true
      case _ => false
    }
    if (dataType.existsRecursively(isInterval)) f
  }
}

相关信息

spark 源码目录

相关文章

spark ArrayBasedMapBuilder 源码

spark ArrayBasedMapData 源码

spark ArrayData 源码

spark BadRecordException 源码

spark CharVarcharUtils 源码

spark CompressionCodecs 源码

spark DataTypeJsonUtils 源码

spark DateFormatter 源码

spark DateTimeFormatterHelper 源码

spark DateTimeUtils 源码

0  赞