spark TypeUtils 源码
spark TypeUtils 代码
文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/util/TypeUtils.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.catalyst.util
import org.apache.spark.sql.catalyst.analysis.{TypeCheckResult, TypeCoercion}
import org.apache.spark.sql.catalyst.analysis.TypeCheckResult.DataTypeMismatch
import org.apache.spark.sql.catalyst.expressions.Cast.toSQLType
import org.apache.spark.sql.catalyst.expressions.RowOrdering
import org.apache.spark.sql.errors.QueryCompilationErrors
import org.apache.spark.sql.types._
/**
* Functions to help with checking for valid data types and value comparison of various types.
*/
object TypeUtils {
def checkForOrderingExpr(dt: DataType, caller: String): TypeCheckResult = {
if (RowOrdering.isOrderable(dt)) {
TypeCheckResult.TypeCheckSuccess
} else {
DataTypeMismatch(
errorSubClass = "INVALID_ORDERING_TYPE",
Map(
"functionName" -> caller,
"dataType" -> toSQLType(dt)
)
)
}
}
def checkForSameTypeInputExpr(types: Seq[DataType], caller: String): TypeCheckResult = {
if (TypeCoercion.haveSameType(types)) {
TypeCheckResult.TypeCheckSuccess
} else {
DataTypeMismatch(
errorSubClass = "DATA_DIFF_TYPES",
messageParameters = Map(
"functionName" -> caller,
"dataType" -> types.map(toSQLType).mkString("(", " or ", ")")
)
)
}
}
def checkForMapKeyType(keyType: DataType): TypeCheckResult = {
if (keyType.existsRecursively(_.isInstanceOf[MapType])) {
DataTypeMismatch(
errorSubClass = "INVALID_MAP_KEY_TYPE",
messageParameters = Map(
"keyType" -> toSQLType(keyType)
)
)
} else {
TypeCheckResult.TypeCheckSuccess
}
}
def checkForAnsiIntervalOrNumericType(
dt: DataType, funcName: String): TypeCheckResult = dt match {
case _: AnsiIntervalType | NullType =>
TypeCheckResult.TypeCheckSuccess
case dt if dt.isInstanceOf[NumericType] => TypeCheckResult.TypeCheckSuccess
case other => TypeCheckResult.TypeCheckFailure(
s"function $funcName requires numeric or interval types, not ${other.catalogString}")
}
def getNumeric(t: DataType, exactNumericRequired: Boolean = false): Numeric[Any] = {
if (exactNumericRequired) {
t.asInstanceOf[NumericType].exactNumeric.asInstanceOf[Numeric[Any]]
} else {
t.asInstanceOf[NumericType].numeric.asInstanceOf[Numeric[Any]]
}
}
@scala.annotation.tailrec
def getInterpretedOrdering(t: DataType): Ordering[Any] = {
t match {
case i: AtomicType => i.ordering.asInstanceOf[Ordering[Any]]
case a: ArrayType => a.interpretedOrdering.asInstanceOf[Ordering[Any]]
case s: StructType => s.interpretedOrdering.asInstanceOf[Ordering[Any]]
case udt: UserDefinedType[_] => getInterpretedOrdering(udt.sqlType)
}
}
/**
* Returns true if the equals method of the elements of the data type is implemented properly.
* This also means that they can be safely used in collections relying on the equals method,
* as sets or maps.
*/
def typeWithProperEquals(dataType: DataType): Boolean = dataType match {
case BinaryType => false
case _: AtomicType => true
case _ => false
}
def failWithIntervalType(dataType: DataType): Unit = {
invokeOnceForInterval(dataType, forbidAnsiIntervals = false) {
throw QueryCompilationErrors.cannotUseIntervalTypeInTableSchemaError()
}
}
def invokeOnceForInterval(dataType: DataType, forbidAnsiIntervals: Boolean)(f: => Unit): Unit = {
def isInterval(dataType: DataType): Boolean = dataType match {
case _: AnsiIntervalType => forbidAnsiIntervals
case CalendarIntervalType => true
case _ => false
}
if (dataType.existsRecursively(isInterval)) f
}
}
相关信息
相关文章
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦