spark ProjectionOverSchema 源码
spark ProjectionOverSchema 代码
文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/ProjectionOverSchema.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.catalyst.expressions
import org.apache.spark.sql.types._
/**
* A Scala extractor that projects an expression over a given schema. Data types,
* field indexes and field counts of complex type extractors and attributes
* are adjusted to fit the schema. All other expressions are left as-is. This
* class is motivated by columnar nested schema pruning.
*
* @param schema nested column schema
* @param output output attributes of the data source relation. They are used to filter out
* attributes in the schema that do not belong to the current relation.
*/
case class ProjectionOverSchema(schema: StructType, output: AttributeSet) {
private val fieldNames = schema.fieldNames.toSet
def unapply(expr: Expression): Option[Expression] = getProjection(expr)
private def getProjection(expr: Expression): Option[Expression] =
expr match {
case a: AttributeReference if fieldNames.contains(a.name) && output.contains(a) =>
Some(a.copy(dataType = schema(a.name).dataType)(a.exprId, a.qualifier))
case GetArrayItem(child, arrayItemOrdinal, failOnError) =>
getProjection(child).map {
projection => GetArrayItem(projection, arrayItemOrdinal, failOnError)
}
case a: GetArrayStructFields =>
getProjection(a.child).map(p => (p, p.dataType)).map {
case (projection, ArrayType(projSchema @ StructType(_), _)) =>
// For case-sensitivity aware field resolution, we should take `ordinal` which
// points to correct struct field, because `ExtractValue` actually does column
// name resolving correctly.
val selectedField = a.child.dataType.asInstanceOf[ArrayType]
.elementType.asInstanceOf[StructType](a.ordinal)
val prunedField = projSchema(selectedField.name)
GetArrayStructFields(projection,
prunedField.copy(name = a.field.name),
projSchema.fieldIndex(selectedField.name),
projSchema.size,
a.containsNull)
case (_, projSchema) =>
throw new IllegalStateException(
s"unmatched child schema for GetArrayStructFields: ${projSchema.toString}"
)
}
case MapKeys(child) =>
getProjection(child).map { projection => MapKeys(projection) }
case MapValues(child) =>
getProjection(child).map { projection => MapValues(projection) }
case GetMapValue(child, key) =>
getProjection(child).map { projection => GetMapValue(projection, key) }
case GetStructFieldObject(child, field: StructField) =>
getProjection(child).map(p => (p, p.dataType)).map {
case (projection, projSchema: StructType) =>
GetStructField(projection, projSchema.fieldIndex(field.name))
case (_, projSchema) =>
throw new IllegalStateException(
s"unmatched child schema for GetStructField: ${projSchema.toString}"
)
}
case ElementAt(left, right, defaultValueOutOfBound, failOnError) if right.foldable =>
getProjection(left).map(p => ElementAt(p, right, defaultValueOutOfBound, failOnError))
case _ =>
None
}
}
相关信息
相关文章
spark ApplyFunctionExpression 源码
spark BloomFilterMightContain 源码
spark CallMethodViaReflection 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦