spark CholeskyDecomposition 源码
spark CholeskyDecomposition 代码
文件路径:/mllib/src/main/scala/org/apache/spark/mllib/linalg/CholeskyDecomposition.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.mllib.linalg
import org.netlib.util.intW
import org.apache.spark.ml.optim.SingularMatrixException
/**
* Compute Cholesky decomposition.
*/
private[spark] object CholeskyDecomposition {
/**
* Solves a symmetric positive definite linear system via Cholesky factorization.
* The input arguments are modified in-place to store the factorization and the solution.
* @param A the upper triangular part of A
* @param bx right-hand side
* @return the solution array
*/
def solve(A: Array[Double], bx: Array[Double]): Array[Double] = {
val k = bx.length
val info = new intW(0)
LAPACK.nativeLAPACK.dppsv("U", k, 1, A, bx, k, info)
checkReturnValue(info, "dppsv")
bx
}
/**
* Computes the inverse of a real symmetric positive definite matrix A
* using the Cholesky factorization A = U**T*U.
* The input arguments are modified in-place to store the inverse matrix.
* @param UAi the upper triangular factor U from the Cholesky factorization A = U**T*U
* @param k the dimension of A
* @return the upper triangle of the (symmetric) inverse of A
*/
def inverse(UAi: Array[Double], k: Int): Array[Double] = {
val info = new intW(0)
LAPACK.nativeLAPACK.dpptri("U", k, UAi, info)
checkReturnValue(info, "dpptri")
UAi
}
private def checkReturnValue(info: intW, method: String): Unit = {
info.`val` match {
case code if code < 0 =>
throw new IllegalStateException(s"LAPACK.$method returned $code; arg ${-code} is illegal")
case code if code > 0 =>
throw new SingularMatrixException (
s"LAPACK.$method returned $code because A is not positive definite. Is A derived from " +
"a singular matrix (e.g. collinear column values)?")
case _ => // do nothing
}
}
}
相关信息
相关文章
spark EigenValueDecomposition 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦