spark LogicalQueryStage 源码
spark LogicalQueryStage 代码
文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/adaptive/LogicalQueryStage.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution.adaptive
import org.apache.spark.sql.catalyst.expressions.{Attribute, SortOrder}
import org.apache.spark.sql.catalyst.plans.logical.{LeafNode, LogicalPlan, RepartitionOperation, Statistics}
import org.apache.spark.sql.catalyst.trees.TreePattern.{LOGICAL_QUERY_STAGE, REPARTITION_OPERATION, TreePattern}
import org.apache.spark.sql.execution.SparkPlan
/**
* The LogicalPlan wrapper for a [[QueryStageExec]], or a snippet of physical plan containing
* a [[QueryStageExec]], in which all ancestor nodes of the [[QueryStageExec]] are linked to
* the same logical node.
*
* For example, a logical Aggregate can be transformed into FinalAgg - Shuffle - PartialAgg, in
* which the Shuffle will be wrapped into a [[QueryStageExec]], thus the [[LogicalQueryStage]]
* will have FinalAgg - QueryStageExec as its physical plan.
*/
// TODO we can potentially include only [[QueryStageExec]] in this class if we make the aggregation
// planning aware of partitioning.
case class LogicalQueryStage(
logicalPlan: LogicalPlan,
physicalPlan: SparkPlan) extends LeafNode {
override def output: Seq[Attribute] = logicalPlan.output
override val isStreaming: Boolean = logicalPlan.isStreaming
override val outputOrdering: Seq[SortOrder] = physicalPlan.outputOrdering
override protected val nodePatterns: Seq[TreePattern] = {
// Repartition is a special node that it represents a shuffle exchange,
// then in AQE the repartition will be always wrapped into `LogicalQueryStage`
val repartitionPattern = logicalPlan match {
case _: RepartitionOperation => Some(REPARTITION_OPERATION)
case _ => None
}
Seq(LOGICAL_QUERY_STAGE) ++ repartitionPattern
}
override def computeStats(): Statistics = {
// TODO this is not accurate when there is other physical nodes above QueryStageExec.
val physicalStats = physicalPlan.collectFirst {
case s: QueryStageExec => s
}.flatMap(_.computeStats())
if (physicalStats.isDefined) {
logDebug(s"Physical stats available as ${physicalStats.get} for plan: $physicalPlan")
} else {
logDebug(s"Physical stats not available for plan: $physicalPlan")
}
physicalStats.getOrElse(logicalPlan.stats)
}
override def maxRows: Option[Long] = stats.rowCount.map(_.min(Long.MaxValue).toLong)
}
相关信息
相关文章
spark AQEPropagateEmptyRelation 源码
spark AdaptiveSparkPlanExec 源码
spark AdaptiveSparkPlanHelper 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦