spark InterpretedSafeProjection 源码
spark InterpretedSafeProjection 代码
文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/InterpretedSafeProjection.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.catalyst.expressions
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.aggregate.NoOp
import org.apache.spark.sql.catalyst.util.{ArrayBasedMapData, ArrayData, GenericArrayData, MapData}
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.types._
/**
* An interpreted version of a safe projection.
*
* @param expressions that produces the resulting fields. These expressions must be bound
* to a schema.
*/
class InterpretedSafeProjection(expressions: Seq[Expression]) extends Projection {
private[this] val subExprEliminationEnabled = SQLConf.get.subexpressionEliminationEnabled
private[this] lazy val runtime =
new SubExprEvaluationRuntime(SQLConf.get.subexpressionEliminationCacheMaxEntries)
private[this] val exprs = if (subExprEliminationEnabled) {
runtime.proxyExpressions(expressions)
} else {
expressions
}
private[this] val mutableRow = new SpecificInternalRow(expressions.map(_.dataType))
private[this] val exprsWithWriters = expressions.zipWithIndex.filter {
case (NoOp, _) => false
case _ => true
}.map { case (e, i) =>
val converter = generateSafeValueConverter(e.dataType)
val writer = InternalRow.getWriter(i, e.dataType)
val f = if (!e.nullable) {
(v: Any) => writer(mutableRow, converter(v))
} else {
(v: Any) => {
if (v == null) {
mutableRow.setNullAt(i)
} else {
writer(mutableRow, converter(v))
}
}
}
(exprs(i), f)
}
private def generateSafeValueConverter(dt: DataType): Any => Any = dt match {
case ArrayType(elemType, _) =>
val elementConverter = generateSafeValueConverter(elemType)
v => {
val arrayValue = v.asInstanceOf[ArrayData]
val result = new Array[Any](arrayValue.numElements())
arrayValue.foreach(elemType, (i, e) => {
result(i) = elementConverter(e)
})
new GenericArrayData(result)
}
case st: StructType =>
val fieldTypes = st.fields.map(_.dataType)
val fieldConverters = fieldTypes.map(generateSafeValueConverter)
v => {
val row = v.asInstanceOf[InternalRow]
val ar = new Array[Any](row.numFields)
var idx = 0
while (idx < row.numFields) {
ar(idx) = fieldConverters(idx)(row.get(idx, fieldTypes(idx)))
idx += 1
}
new GenericInternalRow(ar)
}
case MapType(keyType, valueType, _) =>
lazy val keyConverter = generateSafeValueConverter(keyType)
lazy val valueConverter = generateSafeValueConverter(valueType)
v => {
val mapValue = v.asInstanceOf[MapData]
val keys = mapValue.keyArray().toArray[Any](keyType)
val values = mapValue.valueArray().toArray[Any](valueType)
val convertedKeys = keys.map(keyConverter)
val convertedValues = values.map(valueConverter)
ArrayBasedMapData(convertedKeys, convertedValues)
}
case udt: UserDefinedType[_] =>
generateSafeValueConverter(udt.sqlType)
case _ => identity
}
override def apply(row: InternalRow): InternalRow = {
if (subExprEliminationEnabled) {
runtime.setInput(row)
}
var i = 0
while (i < exprsWithWriters.length) {
val (expr, writer) = exprsWithWriters(i)
writer(expr.eval(row))
i += 1
}
mutableRow
}
}
/**
* Helper functions for creating an [[InterpretedSafeProjection]].
*/
object InterpretedSafeProjection {
/**
* Returns an [[SafeProjection]] for given sequence of bound Expressions.
*/
def createProjection(exprs: Seq[Expression]): Projection = {
// We need to make sure that we do not reuse stateful expressions.
val cleanedExpressions = exprs.map(_.transform {
case s: Stateful => s.freshCopy()
})
new InterpretedSafeProjection(cleanedExpressions)
}
}
相关信息
相关文章
spark ApplyFunctionExpression 源码
spark BloomFilterMightContain 源码
spark CallMethodViaReflection 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦