spark HingeBlockAggregator 源码
spark HingeBlockAggregator 代码
文件路径:/mllib/src/main/scala/org/apache/spark/ml/optim/aggregator/HingeBlockAggregator.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.ml.optim.aggregator
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.internal.Logging
import org.apache.spark.ml.feature.InstanceBlock
import org.apache.spark.ml.linalg._
/**
* HingeBlockAggregator computes the gradient and loss for Huber loss function
* as used in linear regression for blocks in sparse or dense matrix in an online fashion.
*
* Two BlockHuberAggregators can be merged together to have a summary of loss and gradient
* of the corresponding joint dataset.
*
* NOTE: The feature values are expected to already have be scaled (multiplied by bcInverseStd,
* but NOT centered) before computation.
*
* @param bcCoefficients The coefficients corresponding to the features.
* @param fitIntercept Whether to fit an intercept term. When true, will perform data centering
* in a virtual way. Then we MUST adjust the intercept of both initial
* coefficients and final solution in the caller.
*/
private[ml] class HingeBlockAggregator(
bcInverseStd: Broadcast[Array[Double]],
bcScaledMean: Broadcast[Array[Double]],
fitIntercept: Boolean)(bcCoefficients: Broadcast[Vector])
extends DifferentiableLossAggregator[InstanceBlock, HingeBlockAggregator]
with Logging {
if (fitIntercept) {
require(bcScaledMean != null && bcScaledMean.value.length == bcInverseStd.value.length,
"scaled means is required when center the vectors")
}
private val numFeatures = bcInverseStd.value.length
protected override val dim: Int = bcCoefficients.value.size
@transient private lazy val coefficientsArray = bcCoefficients.value match {
case DenseVector(values) => values
case _ => throw new IllegalArgumentException(s"coefficients only supports dense vector but " +
s"got type ${bcCoefficients.value.getClass}.)")
}
// pre-computed margin of an empty vector.
// with this variable as an offset, for a sparse vector, we only need to
// deal with non-zero values in prediction.
private val marginOffset = if (fitIntercept) {
coefficientsArray.last -
BLAS.javaBLAS.ddot(numFeatures, coefficientsArray, 1, bcScaledMean.value, 1)
} else {
Double.NaN
}
@transient private var buffer: Array[Double] = _
/**
* Add a new training instance block to this HingeBlockAggregator, and update the loss
* and gradient of the objective function.
*
* @param block The instance block of data point to be added.
* @return This HingeBlockAggregator object.
*/
def add(block: InstanceBlock): this.type = {
require(block.matrix.isTransposed)
require(numFeatures == block.numFeatures, s"Dimensions mismatch when adding new " +
s"instance. Expecting $numFeatures but got ${block.numFeatures}.")
require(block.weightIter.forall(_ >= 0),
s"instance weights ${block.weightIter.mkString("[", ",", "]")} has to be >= 0.0")
if (block.weightIter.forall(_ == 0)) return this
val size = block.size
if (buffer == null || buffer.length < size) {
buffer = Array.ofDim[Double](size)
}
// arr here represents margins
val arr = buffer
if (fitIntercept) {
java.util.Arrays.fill(arr, 0, size, marginOffset)
BLAS.gemv(1.0, block.matrix, coefficientsArray, 1.0, arr)
} else {
BLAS.gemv(1.0, block.matrix, coefficientsArray, 0.0, arr)
}
// in-place convert margins to multiplier
// then, arr represents multiplier
var localLossSum = 0.0
var localWeightSum = 0.0
var multiplierSum = 0.0
var i = 0
while (i < size) {
val weight = block.getWeight(i)
localWeightSum += weight
if (weight > 0) {
// Our loss function with {0, 1} labels is max(0, 1 - (2y - 1) (f_w(x)))
// Therefore the gradient is -(2y - 1)*x
val label = block.getLabel(i)
val labelScaled = label + label - 1.0
val loss = (1.0 - labelScaled * arr(i)) * weight
if (loss > 0) {
localLossSum += loss
val multiplier = -labelScaled * weight
arr(i) = multiplier
multiplierSum += multiplier
} else { arr(i) = 0.0 }
} else { arr(i) = 0.0 }
i += 1
}
lossSum += localLossSum
weightSum += localWeightSum
// predictions are all correct, no gradient signal
if (arr.forall(_ == 0)) return this
// update the linear part of gradientSumArray
BLAS.gemv(1.0, block.matrix.transpose, arr, 1.0, gradientSumArray)
if (fitIntercept) {
// above update of the linear part of gradientSumArray does NOT take the centering
// into account, here we need to adjust this part.
BLAS.javaBLAS.daxpy(numFeatures, -multiplierSum, bcScaledMean.value, 1,
gradientSumArray, 1)
// update the intercept part of gradientSumArray
gradientSumArray(numFeatures) += multiplierSum
}
this
}
}
相关信息
相关文章
spark BinaryLogisticBlockAggregator 源码
spark DifferentiableLossAggregator 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦