hadoop GpuResourceHandlerImpl 源码

  • 2022-10-20
  • 浏览 (217)

haddop GpuResourceHandlerImpl 代码

文件路径:/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/containermanager/linux/resources/gpu/GpuResourceHandlerImpl.java

/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.hadoop.yarn.server.nodemanager.containermanager.linux.resources.gpu;

import static org.apache.hadoop.yarn.server.nodemanager.containermanager.linux.resources.ResourcesExceptionUtil.throwIfNecessary;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.util.StringUtils;
import org.apache.hadoop.yarn.api.records.ContainerId;
import org.apache.hadoop.yarn.exceptions.YarnException;
import org.apache.hadoop.yarn.server.nodemanager.Context;
import org.apache.hadoop.yarn.server.nodemanager.containermanager.container.Container;
import org.apache.hadoop.yarn.server.nodemanager.containermanager.linux.privileged.PrivilegedOperation;
import org.apache.hadoop.yarn.server.nodemanager.containermanager.linux.privileged.PrivilegedOperationException;
import org.apache.hadoop.yarn.server.nodemanager.containermanager.linux.privileged.PrivilegedOperationExecutor;
import org.apache.hadoop.yarn.server.nodemanager.containermanager.linux.resources.CGroupsHandler;
import org.apache.hadoop.yarn.server.nodemanager.containermanager.linux.resources.ResourceHandler;
import org.apache.hadoop.yarn.server.nodemanager.containermanager.linux.resources.ResourceHandlerException;
import org.apache.hadoop.yarn.server.nodemanager.containermanager.linux.runtime.OCIContainerRuntime;
import org.apache.hadoop.yarn.server.nodemanager.containermanager.resourceplugin.gpu.GpuDevice;
import org.apache.hadoop.yarn.server.nodemanager.containermanager.resourceplugin.gpu.GpuDiscoverer;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

public class GpuResourceHandlerImpl implements ResourceHandler {
  final static Logger LOG = LoggerFactory
      .getLogger(GpuResourceHandlerImpl.class);

  // This will be used by container-executor to add necessary clis
  public static final String EXCLUDED_GPUS_CLI_OPTION = "--excluded_gpus";
  public static final String CONTAINER_ID_CLI_OPTION = "--container_id";

  private final Context nmContext;
  private final GpuResourceAllocator gpuAllocator;
  private final CGroupsHandler cGroupsHandler;
  private final PrivilegedOperationExecutor privilegedOperationExecutor;
  private final GpuDiscoverer gpuDiscoverer;

  public GpuResourceHandlerImpl(Context nmContext,
      CGroupsHandler cGroupsHandler,
      PrivilegedOperationExecutor privilegedOperationExecutor,
      GpuDiscoverer gpuDiscoverer) {
    this.nmContext = nmContext;
    this.cGroupsHandler = cGroupsHandler;
    this.privilegedOperationExecutor = privilegedOperationExecutor;
    this.gpuAllocator = new GpuResourceAllocator(nmContext);
    this.gpuDiscoverer = gpuDiscoverer;
  }

  @Override
  public List<PrivilegedOperation> bootstrap(Configuration configuration)
      throws ResourceHandlerException {
    List<GpuDevice> usableGpus;
    try {
      usableGpus = gpuDiscoverer.getGpusUsableByYarn();
      if (usableGpus == null || usableGpus.isEmpty()) {
        String message = "GPU is enabled on the NodeManager, but couldn't find "
            + "any usable GPU devices, please double check configuration!";
        LOG.error(message);
        throwIfNecessary(new ResourceHandlerException(message),
            configuration);
      }
    } catch (YarnException e) {
      LOG.error("Exception when trying to get usable GPU device", e);
      throw new ResourceHandlerException(e);
    }

    for (GpuDevice gpu : usableGpus) {
      gpuAllocator.addGpu(gpu);
    }

    // And initialize cgroups
    this.cGroupsHandler.initializeCGroupController(
        CGroupsHandler.CGroupController.DEVICES);

    return null;
  }

  @Override
  public synchronized List<PrivilegedOperation> preStart(Container container)
      throws ResourceHandlerException {
    String containerIdStr = container.getContainerId().toString();

    // Assign Gpus to container if requested some.
    GpuResourceAllocator.GpuAllocation allocation = gpuAllocator.assignGpus(
        container);

    // Create device cgroups for the container
    cGroupsHandler.createCGroup(CGroupsHandler.CGroupController.DEVICES,
        containerIdStr);
    if (!OCIContainerRuntime.isOCICompliantContainerRequested(
        nmContext.getConf(),
        container.getLaunchContext().getEnvironment())) {
      // Write to devices cgroup only for non-docker container. The reason is
      // docker engine runtime runc do the devices cgroups initialize in the
      // pre-hook, see:
      //   https://github.com/opencontainers/runc/blob/master/libcontainer/configs/device_defaults.go
      //
      // YARN by default runs docker container inside cgroup, if we setup cgroups
      // devices.deny for the parent cgroup for launched container, we can see
      // errors like: failed to write c *:* m to devices.allow:
      // write path-to-parent-cgroup/<container-id>/devices.allow:
      // operation not permitted.
      //
      // To avoid this happen, if docker is requested when container being
      // launched, we will not setup devices.deny for the container. Instead YARN
      // will pass --device parameter to docker engine. See NvidiaDockerV1CommandPlugin
      try {
        // Execute c-e to setup GPU isolation before launch the container
        PrivilegedOperation privilegedOperation = new PrivilegedOperation(
            PrivilegedOperation.OperationType.GPU,
            Arrays.asList(CONTAINER_ID_CLI_OPTION, containerIdStr));
        if (!allocation.getDeniedGPUs().isEmpty()) {
          List<Integer> minorNumbers = new ArrayList<>();
          for (GpuDevice deniedGpu : allocation.getDeniedGPUs()) {
            minorNumbers.add(deniedGpu.getMinorNumber());
          }
          privilegedOperation.appendArgs(Arrays.asList(EXCLUDED_GPUS_CLI_OPTION,
              StringUtils.join(",", minorNumbers)));
        }

        privilegedOperationExecutor.executePrivilegedOperation(
            privilegedOperation, true);
      } catch (PrivilegedOperationException e) {
        cGroupsHandler.deleteCGroup(CGroupsHandler.CGroupController.DEVICES,
            containerIdStr);
        LOG.warn("Could not update cgroup for container", e);
        throw new ResourceHandlerException(e);
      }

      List<PrivilegedOperation> ret = new ArrayList<>();
      ret.add(new PrivilegedOperation(
          PrivilegedOperation.OperationType.ADD_PID_TO_CGROUP,
          PrivilegedOperation.CGROUP_ARG_PREFIX + cGroupsHandler
              .getPathForCGroupTasks(CGroupsHandler.CGroupController.DEVICES,
                  containerIdStr)));

      return ret;
    }
    return null;
  }

  public GpuResourceAllocator getGpuAllocator() {
    return gpuAllocator;
  }

  @Override
  public List<PrivilegedOperation> reacquireContainer(ContainerId containerId)
      throws ResourceHandlerException {
    gpuAllocator.recoverAssignedGpus(containerId);
    return null;
  }

  @Override
  public List<PrivilegedOperation> updateContainer(Container container)
      throws ResourceHandlerException {
    return null;
  }

  @Override
  public synchronized List<PrivilegedOperation> postComplete(
      ContainerId containerId) throws ResourceHandlerException {
    gpuAllocator.unassignGpus(containerId);
    cGroupsHandler.deleteCGroup(CGroupsHandler.CGroupController.DEVICES,
        containerId.toString());
    return null;
  }

  @Override
  public List<PrivilegedOperation> teardown() throws ResourceHandlerException {
    return null;
  }

  @Override
  public String toString() {
    return GpuResourceHandlerImpl.class.getName() + "{" +
        "gpuAllocator=" + gpuAllocator +
        '}';
  }
}

相关信息

hadoop 源码目录

相关文章

hadoop GpuResourceAllocator 源码

0  赞