hadoop GpuResourceHandlerImpl 源码
haddop GpuResourceHandlerImpl 代码
文件路径:/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/containermanager/linux/resources/gpu/GpuResourceHandlerImpl.java
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.yarn.server.nodemanager.containermanager.linux.resources.gpu;
import static org.apache.hadoop.yarn.server.nodemanager.containermanager.linux.resources.ResourcesExceptionUtil.throwIfNecessary;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.util.StringUtils;
import org.apache.hadoop.yarn.api.records.ContainerId;
import org.apache.hadoop.yarn.exceptions.YarnException;
import org.apache.hadoop.yarn.server.nodemanager.Context;
import org.apache.hadoop.yarn.server.nodemanager.containermanager.container.Container;
import org.apache.hadoop.yarn.server.nodemanager.containermanager.linux.privileged.PrivilegedOperation;
import org.apache.hadoop.yarn.server.nodemanager.containermanager.linux.privileged.PrivilegedOperationException;
import org.apache.hadoop.yarn.server.nodemanager.containermanager.linux.privileged.PrivilegedOperationExecutor;
import org.apache.hadoop.yarn.server.nodemanager.containermanager.linux.resources.CGroupsHandler;
import org.apache.hadoop.yarn.server.nodemanager.containermanager.linux.resources.ResourceHandler;
import org.apache.hadoop.yarn.server.nodemanager.containermanager.linux.resources.ResourceHandlerException;
import org.apache.hadoop.yarn.server.nodemanager.containermanager.linux.runtime.OCIContainerRuntime;
import org.apache.hadoop.yarn.server.nodemanager.containermanager.resourceplugin.gpu.GpuDevice;
import org.apache.hadoop.yarn.server.nodemanager.containermanager.resourceplugin.gpu.GpuDiscoverer;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class GpuResourceHandlerImpl implements ResourceHandler {
final static Logger LOG = LoggerFactory
.getLogger(GpuResourceHandlerImpl.class);
// This will be used by container-executor to add necessary clis
public static final String EXCLUDED_GPUS_CLI_OPTION = "--excluded_gpus";
public static final String CONTAINER_ID_CLI_OPTION = "--container_id";
private final Context nmContext;
private final GpuResourceAllocator gpuAllocator;
private final CGroupsHandler cGroupsHandler;
private final PrivilegedOperationExecutor privilegedOperationExecutor;
private final GpuDiscoverer gpuDiscoverer;
public GpuResourceHandlerImpl(Context nmContext,
CGroupsHandler cGroupsHandler,
PrivilegedOperationExecutor privilegedOperationExecutor,
GpuDiscoverer gpuDiscoverer) {
this.nmContext = nmContext;
this.cGroupsHandler = cGroupsHandler;
this.privilegedOperationExecutor = privilegedOperationExecutor;
this.gpuAllocator = new GpuResourceAllocator(nmContext);
this.gpuDiscoverer = gpuDiscoverer;
}
@Override
public List<PrivilegedOperation> bootstrap(Configuration configuration)
throws ResourceHandlerException {
List<GpuDevice> usableGpus;
try {
usableGpus = gpuDiscoverer.getGpusUsableByYarn();
if (usableGpus == null || usableGpus.isEmpty()) {
String message = "GPU is enabled on the NodeManager, but couldn't find "
+ "any usable GPU devices, please double check configuration!";
LOG.error(message);
throwIfNecessary(new ResourceHandlerException(message),
configuration);
}
} catch (YarnException e) {
LOG.error("Exception when trying to get usable GPU device", e);
throw new ResourceHandlerException(e);
}
for (GpuDevice gpu : usableGpus) {
gpuAllocator.addGpu(gpu);
}
// And initialize cgroups
this.cGroupsHandler.initializeCGroupController(
CGroupsHandler.CGroupController.DEVICES);
return null;
}
@Override
public synchronized List<PrivilegedOperation> preStart(Container container)
throws ResourceHandlerException {
String containerIdStr = container.getContainerId().toString();
// Assign Gpus to container if requested some.
GpuResourceAllocator.GpuAllocation allocation = gpuAllocator.assignGpus(
container);
// Create device cgroups for the container
cGroupsHandler.createCGroup(CGroupsHandler.CGroupController.DEVICES,
containerIdStr);
if (!OCIContainerRuntime.isOCICompliantContainerRequested(
nmContext.getConf(),
container.getLaunchContext().getEnvironment())) {
// Write to devices cgroup only for non-docker container. The reason is
// docker engine runtime runc do the devices cgroups initialize in the
// pre-hook, see:
// https://github.com/opencontainers/runc/blob/master/libcontainer/configs/device_defaults.go
//
// YARN by default runs docker container inside cgroup, if we setup cgroups
// devices.deny for the parent cgroup for launched container, we can see
// errors like: failed to write c *:* m to devices.allow:
// write path-to-parent-cgroup/<container-id>/devices.allow:
// operation not permitted.
//
// To avoid this happen, if docker is requested when container being
// launched, we will not setup devices.deny for the container. Instead YARN
// will pass --device parameter to docker engine. See NvidiaDockerV1CommandPlugin
try {
// Execute c-e to setup GPU isolation before launch the container
PrivilegedOperation privilegedOperation = new PrivilegedOperation(
PrivilegedOperation.OperationType.GPU,
Arrays.asList(CONTAINER_ID_CLI_OPTION, containerIdStr));
if (!allocation.getDeniedGPUs().isEmpty()) {
List<Integer> minorNumbers = new ArrayList<>();
for (GpuDevice deniedGpu : allocation.getDeniedGPUs()) {
minorNumbers.add(deniedGpu.getMinorNumber());
}
privilegedOperation.appendArgs(Arrays.asList(EXCLUDED_GPUS_CLI_OPTION,
StringUtils.join(",", minorNumbers)));
}
privilegedOperationExecutor.executePrivilegedOperation(
privilegedOperation, true);
} catch (PrivilegedOperationException e) {
cGroupsHandler.deleteCGroup(CGroupsHandler.CGroupController.DEVICES,
containerIdStr);
LOG.warn("Could not update cgroup for container", e);
throw new ResourceHandlerException(e);
}
List<PrivilegedOperation> ret = new ArrayList<>();
ret.add(new PrivilegedOperation(
PrivilegedOperation.OperationType.ADD_PID_TO_CGROUP,
PrivilegedOperation.CGROUP_ARG_PREFIX + cGroupsHandler
.getPathForCGroupTasks(CGroupsHandler.CGroupController.DEVICES,
containerIdStr)));
return ret;
}
return null;
}
public GpuResourceAllocator getGpuAllocator() {
return gpuAllocator;
}
@Override
public List<PrivilegedOperation> reacquireContainer(ContainerId containerId)
throws ResourceHandlerException {
gpuAllocator.recoverAssignedGpus(containerId);
return null;
}
@Override
public List<PrivilegedOperation> updateContainer(Container container)
throws ResourceHandlerException {
return null;
}
@Override
public synchronized List<PrivilegedOperation> postComplete(
ContainerId containerId) throws ResourceHandlerException {
gpuAllocator.unassignGpus(containerId);
cGroupsHandler.deleteCGroup(CGroupsHandler.CGroupController.DEVICES,
containerId.toString());
return null;
}
@Override
public List<PrivilegedOperation> teardown() throws ResourceHandlerException {
return null;
}
@Override
public String toString() {
return GpuResourceHandlerImpl.class.getName() + "{" +
"gpuAllocator=" + gpuAllocator +
'}';
}
}
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦