spark LogicalRelation 源码

  • 2022-10-20
  • 浏览 (293)

spark LogicalRelation 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/LogicalRelation.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.spark.sql.execution.datasources

import org.apache.spark.sql.catalyst.analysis.MultiInstanceRelation
import org.apache.spark.sql.catalyst.catalog.CatalogTable
import org.apache.spark.sql.catalyst.expressions.{AttributeMap, AttributeReference}
import org.apache.spark.sql.catalyst.plans.QueryPlan
import org.apache.spark.sql.catalyst.plans.logical.{ExposesMetadataColumns, LeafNode, LogicalPlan, Statistics}
import org.apache.spark.sql.catalyst.util.{truncatedString, CharVarcharUtils}
import org.apache.spark.sql.sources.BaseRelation

/**
 * Used to link a [[BaseRelation]] in to a logical query plan.
 */
case class LogicalRelation(
    relation: BaseRelation,
    output: Seq[AttributeReference],
    catalogTable: Option[CatalogTable],
    override val isStreaming: Boolean)
  extends LeafNode with MultiInstanceRelation with ExposesMetadataColumns {

  // Only care about relation when canonicalizing.
  override def doCanonicalize(): LogicalPlan = copy(
    output = output.map(QueryPlan.normalizeExpressions(_, output)),
    catalogTable = None)

  override def computeStats(): Statistics = {
    catalogTable
      .flatMap(_.stats.map(_.toPlanStats(output, conf.cboEnabled || conf.planStatsEnabled)))
      .getOrElse(Statistics(sizeInBytes = relation.sizeInBytes))
  }

  /** Used to lookup original attribute capitalization */
  val attributeMap: AttributeMap[AttributeReference] = AttributeMap(output.map(o => (o, o)))

  /**
   * Returns a new instance of this LogicalRelation. According to the semantics of
   * MultiInstanceRelation, this method returns a copy of this object with
   * unique expression ids. We respect the `expectedOutputAttributes` and create
   * new instances of attributes in it.
   */
  override def newInstance(): LogicalRelation = {
    this.copy(output = output.map(_.newInstance()))
  }

  override def refresh(): Unit = relation match {
    case fs: HadoopFsRelation => fs.location.refresh()
    case _ =>  // Do nothing.
  }

  override def simpleString(maxFields: Int): String = {
    s"Relation ${catalogTable.map(_.identifier.unquotedString).getOrElse("")}" +
      s"[${truncatedString(output, ",", maxFields)}] $relation"
  }

  override lazy val metadataOutput: Seq[AttributeReference] = relation match {
    case relation: HadoopFsRelation =>
      val resolve = conf.resolver
      val outputNames = outputSet.map(_.name)
      def isOutputColumn(col: AttributeReference): Boolean = {
        outputNames.exists(name => resolve(col.name, name))
      }
      // filter out the metadata struct column if it has the name conflicting with output columns.
      // if the file has a column "_metadata",
      // then the data column should be returned not the metadata struct column
      Seq(FileFormat.createFileMetadataCol(relation.fileFormat)).filterNot(isOutputColumn)
    case _ => Nil
  }

  override def withMetadataColumns(): LogicalRelation = {
    if (metadataOutput.nonEmpty) {
      this.copy(output = output ++ metadataOutput)
    } else {
      this
    }
  }
}

object LogicalRelation {
  def apply(relation: BaseRelation, isStreaming: Boolean = false): LogicalRelation = {
    // The v1 source may return schema containing char/varchar type. We replace char/varchar
    // with "annotated" string type here as the query engine doesn't support char/varchar yet.
    val schema = CharVarcharUtils.replaceCharVarcharWithStringInSchema(relation.schema)
    LogicalRelation(relation, schema.toAttributes, None, isStreaming)
  }

  def apply(relation: BaseRelation, table: CatalogTable): LogicalRelation = {
    // The v1 source may return schema containing char/varchar type. We replace char/varchar
    // with "annotated" string type here as the query engine doesn't support char/varchar yet.
    val schema = CharVarcharUtils.replaceCharVarcharWithStringInSchema(relation.schema)
    LogicalRelation(relation, schema.toAttributes, Some(table), false)
  }
}

相关信息

spark 源码目录

相关文章

spark AggregatePushDownUtils 源码

spark ApplyCharTypePadding 源码

spark BasicWriteStatsTracker 源码

spark BucketingUtils 源码

spark CatalogFileIndex 源码

spark CodecStreams 源码

spark DataSource 源码

spark DataSourceStrategy 源码

spark DataSourceUtils 源码

spark DaysWritable 源码

0  赞