spark Loss 源码
spark Loss 代码
文件路径:/mllib/src/main/scala/org/apache/spark/mllib/tree/loss/Loss.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.mllib.tree.loss
import org.apache.spark.annotation.Since
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.tree.model.TreeEnsembleModel
import org.apache.spark.rdd.RDD
/**
* Trait for adding "pluggable" loss functions for the gradient boosting algorithm.
*/
@Since("1.2.0")
trait Loss extends Serializable {
/**
* Method to calculate the gradients for the gradient boosting calculation.
* @param prediction Predicted feature
* @param label true label.
* @return Loss gradient.
*/
@Since("1.2.0")
def gradient(prediction: Double, label: Double): Double
/**
* Method to calculate error of the base learner for the gradient boosting calculation.
*
* @param model Model of the weak learner.
* @param data Training dataset: RDD of [[org.apache.spark.mllib.regression.LabeledPoint]].
* @return Measure of model error on data
*
* @note This method is not used by the gradient boosting algorithm but is useful for debugging
* purposes.
*/
@Since("1.2.0")
def computeError(model: TreeEnsembleModel, data: RDD[LabeledPoint]): Double = {
data.map(point => computeError(model.predict(point.features), point.label)).mean()
}
/**
* Method to calculate loss when the predictions are already known.
*
* @param prediction Predicted label.
* @param label True label.
* @return Measure of model error on datapoint.
*
* @note This method is used in the method evaluateEachIteration to avoid recomputing the
* predicted values from previously fit trees.
*/
private[spark] def computeError(prediction: Double, label: Double): Double
}
private[spark] trait ClassificationLoss extends Loss {
/**
* Computes the class probability given the margin.
*/
private[spark] def computeProbability(margin: Double): Double
}
相关信息
相关文章
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦