spark MultilayerPerceptronClassifierExample 源码

  • 2022-10-20
  • 浏览 (207)

spark MultilayerPerceptronClassifierExample 代码

文件路径:/examples/src/main/scala/org/apache/spark/examples/ml/MultilayerPerceptronClassifierExample.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.ml

// $example on$
import org.apache.spark.ml.classification.MultilayerPerceptronClassifier
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
// $example off$
import org.apache.spark.sql.SparkSession

/**
 * An example for Multilayer Perceptron Classification.
 */
object MultilayerPerceptronClassifierExample {

  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder
      .appName("MultilayerPerceptronClassifierExample")
      .getOrCreate()

    // $example on$
    // Load the data stored in LIBSVM format as a DataFrame.
    val data = spark.read.format("libsvm")
      .load("data/mllib/sample_multiclass_classification_data.txt")

    // Split the data into train and test
    val splits = data.randomSplit(Array(0.6, 0.4), seed = 1234L)
    val train = splits(0)
    val test = splits(1)

    // specify layers for the neural network:
    // input layer of size 4 (features), two intermediate of size 5 and 4
    // and output of size 3 (classes)
    val layers = Array[Int](4, 5, 4, 3)

    // create the trainer and set its parameters
    val trainer = new MultilayerPerceptronClassifier()
      .setLayers(layers)
      .setBlockSize(128)
      .setSeed(1234L)
      .setMaxIter(100)

    // train the model
    val model = trainer.fit(train)

    // compute accuracy on the test set
    val result = model.transform(test)
    val predictionAndLabels = result.select("prediction", "label")
    val evaluator = new MulticlassClassificationEvaluator()
      .setMetricName("accuracy")

    println(s"Test set accuracy = ${evaluator.evaluate(predictionAndLabels)}")
    // $example off$

    spark.stop()
  }
}
// scalastyle:on println

相关信息

spark 源码目录

相关文章

spark AFTSurvivalRegressionExample 源码

spark ALSExample 源码

spark BinarizerExample 源码

spark BisectingKMeansExample 源码

spark BucketedRandomProjectionLSHExample 源码

spark BucketizerExample 源码

spark ChiSqSelectorExample 源码

spark ChiSquareTestExample 源码

spark CorrelationExample 源码

spark CountVectorizerExample 源码

0  赞