spark OptimizeSkewInRebalancePartitions 源码

  • 2022-10-20
  • 浏览 (264)

spark OptimizeSkewInRebalancePartitions 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/adaptive/OptimizeSkewInRebalancePartitions.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.adaptive

import org.apache.spark.sql.execution.{CoalescedPartitionSpec, ShufflePartitionSpec, SparkPlan}
import org.apache.spark.sql.execution.exchange.{REBALANCE_PARTITIONS_BY_COL, REBALANCE_PARTITIONS_BY_NONE, ShuffleOrigin}
import org.apache.spark.sql.internal.SQLConf

/**
 * A rule to optimize the skewed shuffle partitions in [[RebalancePartitions]] based on the map
 * output statistics, which can avoid data skew that hurt performance.
 *
 * We use ADVISORY_PARTITION_SIZE_IN_BYTES size to decide if a partition should be optimized.
 * Let's say we have 3 maps with 3 shuffle partitions, and assuming r1 has data skew issue.
 * the map side looks like:
 *   m0:[b0, b1, b2], m1:[b0, b1, b2], m2:[b0, b1, b2]
 * and the reduce side looks like:
 *                            (without this rule) r1[m0-b1, m1-b1, m2-b1]
 *                              /                                     \
 *   r0:[m0-b0, m1-b0, m2-b0], r1-0:[m0-b1], r1-1:[m1-b1], r1-2:[m2-b1], r2[m0-b2, m1-b2, m2-b2]
 */
object OptimizeSkewInRebalancePartitions extends AQEShuffleReadRule {

  override val supportedShuffleOrigins: Seq[ShuffleOrigin] =
    Seq(REBALANCE_PARTITIONS_BY_NONE, REBALANCE_PARTITIONS_BY_COL)

  /**
   * Splits the skewed partition based on the map size and the target partition size
   * after split. Create a list of `PartialReducerPartitionSpec` for skewed partition and
   * create `CoalescedPartition` for normal partition.
   */
  private def optimizeSkewedPartitions(
      shuffleId: Int,
      bytesByPartitionId: Array[Long],
      targetSize: Long): Seq[ShufflePartitionSpec] = {
    val smallPartitionFactor =
      conf.getConf(SQLConf.ADAPTIVE_REBALANCE_PARTITIONS_SMALL_PARTITION_FACTOR)
    bytesByPartitionId.indices.flatMap { reduceIndex =>
      val bytes = bytesByPartitionId(reduceIndex)
      if (bytes > targetSize) {
        val newPartitionSpec = ShufflePartitionsUtil.createSkewPartitionSpecs(
          shuffleId, reduceIndex, targetSize, smallPartitionFactor)
        if (newPartitionSpec.isEmpty) {
          CoalescedPartitionSpec(reduceIndex, reduceIndex + 1, bytes) :: Nil
        } else {
          logDebug(s"For shuffle $shuffleId, partition $reduceIndex is skew, " +
            s"split it into ${newPartitionSpec.get.size} parts.")
          newPartitionSpec.get
        }
      } else {
        CoalescedPartitionSpec(reduceIndex, reduceIndex + 1, bytes) :: Nil
      }
    }
  }

  private def tryOptimizeSkewedPartitions(shuffle: ShuffleQueryStageExec): SparkPlan = {
    val advisorySize = conf.getConf(SQLConf.ADVISORY_PARTITION_SIZE_IN_BYTES)
    val mapStats = shuffle.mapStats
    if (mapStats.isEmpty ||
      mapStats.get.bytesByPartitionId.forall(_ <= advisorySize)) {
      return shuffle
    }

    val newPartitionsSpec = optimizeSkewedPartitions(
      mapStats.get.shuffleId, mapStats.get.bytesByPartitionId, advisorySize)
    // return origin plan if we can not optimize partitions
    if (newPartitionsSpec.length == mapStats.get.bytesByPartitionId.length) {
      shuffle
    } else {
      AQEShuffleReadExec(shuffle, newPartitionsSpec)
    }
  }

  override def apply(plan: SparkPlan): SparkPlan = {
    if (!conf.getConf(SQLConf.ADAPTIVE_OPTIMIZE_SKEWS_IN_REBALANCE_PARTITIONS_ENABLED)) {
      return plan
    }

    plan transformUp {
      case stage: ShuffleQueryStageExec if isSupported(stage.shuffle) =>
        tryOptimizeSkewedPartitions(stage)
    }
  }
}

相关信息

spark 源码目录

相关文章

spark AQEOptimizer 源码

spark AQEPropagateEmptyRelation 源码

spark AQEShuffleReadExec 源码

spark AQEShuffleReadRule 源码

spark AQEUtils 源码

spark AdaptiveRulesHolder 源码

spark AdaptiveSparkPlanExec 源码

spark AdaptiveSparkPlanHelper 源码

spark AdjustShuffleExchangePosition 源码

spark CoalesceShufflePartitions 源码

0  赞