spark PythonSQLUtils 源码

  • 2022-10-20
  • 浏览 (229)

spark PythonSQLUtils 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/api/python/PythonSQLUtils.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.api.python

import java.io.InputStream
import java.net.Socket
import java.nio.channels.Channels
import java.util.Locale

import net.razorvine.pickle.{Pickler, Unpickler}

import org.apache.spark.api.python.DechunkedInputStream
import org.apache.spark.internal.Logging
import org.apache.spark.security.SocketAuthServer
import org.apache.spark.sql.{Column, DataFrame, Row, SparkSession}
import org.apache.spark.sql.catalyst.{CatalystTypeConverters, InternalRow}
import org.apache.spark.sql.catalyst.analysis.FunctionRegistry
import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.expressions.aggregate._
import org.apache.spark.sql.catalyst.parser.CatalystSqlParser
import org.apache.spark.sql.execution.{ExplainMode, QueryExecution}
import org.apache.spark.sql.execution.arrow.ArrowConverters
import org.apache.spark.sql.execution.python.EvaluatePython
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.types.{DataType, StructType}

private[sql] object PythonSQLUtils extends Logging {
  private def withInternalRowPickler(f: Pickler => Array[Byte]): Array[Byte] = {
    EvaluatePython.registerPicklers()
    val pickler = new Pickler(true, false)
    val ret = try {
        f(pickler)
      } finally {
        pickler.close()
      }
    ret
  }

  private def withInternalRowUnpickler(f: Unpickler => Any): Any = {
    EvaluatePython.registerPicklers()
    val unpickler = new Unpickler
    val ret = try {
        f(unpickler)
      } finally {
        unpickler.close()
      }
    ret
  }

  def parseDataType(typeText: String): DataType = CatalystSqlParser.parseDataType(typeText)

  // This is needed when generating SQL documentation for built-in functions.
  def listBuiltinFunctionInfos(): Array[ExpressionInfo] = {
    FunctionRegistry.functionSet.flatMap(f => FunctionRegistry.builtin.lookupFunction(f)).toArray
  }

  private def listAllSQLConfigs(): Seq[(String, String, String, String)] = {
    val conf = new SQLConf()
    conf.getAllDefinedConfs
  }

  def listRuntimeSQLConfigs(): Array[(String, String, String, String)] = {
    // Py4J doesn't seem to translate Seq well, so we convert to an Array.
    listAllSQLConfigs().filterNot(p => SQLConf.isStaticConfigKey(p._1)).toArray
  }

  def listStaticSQLConfigs(): Array[(String, String, String, String)] = {
    listAllSQLConfigs().filter(p => SQLConf.isStaticConfigKey(p._1)).toArray
  }

  def isTimestampNTZPreferred: Boolean =
    SQLConf.get.timestampType == org.apache.spark.sql.types.TimestampNTZType

  /**
   * Python callable function to read a file in Arrow stream format and create an iterator
   * of serialized ArrowRecordBatches.
   */
  def readArrowStreamFromFile(filename: String): Iterator[Array[Byte]] = {
    ArrowConverters.readArrowStreamFromFile(filename).iterator
  }

  /**
   * Python callable function to read a file in Arrow stream format and create a [[DataFrame]]
   * from the Arrow batch iterator.
   */
  def toDataFrame(
      arrowBatches: Iterator[Array[Byte]],
      schemaString: String,
      session: SparkSession): DataFrame = {
    ArrowConverters.toDataFrame(arrowBatches, schemaString, session)
  }

  def explainString(queryExecution: QueryExecution, mode: String): String = {
    queryExecution.explainString(ExplainMode.fromString(mode))
  }

  def toPyRow(row: Row): Array[Byte] = {
    assert(row.isInstanceOf[GenericRowWithSchema])
    withInternalRowPickler(_.dumps(EvaluatePython.toJava(
      CatalystTypeConverters.convertToCatalyst(row), row.schema)))
  }

  def toJVMRow(
      arr: Array[Byte],
      returnType: StructType,
      deserializer: ExpressionEncoder.Deserializer[Row]): Row = {
    val fromJava = EvaluatePython.makeFromJava(returnType)
    val internalRow =
        fromJava(withInternalRowUnpickler(_.loads(arr))).asInstanceOf[InternalRow]
    deserializer(internalRow)
  }

  def castTimestampNTZToLong(c: Column): Column = Column(CastTimestampNTZToLong(c.expr))

  def ewm(e: Column, alpha: Double, ignoreNA: Boolean): Column =
    Column(EWM(e.expr, alpha, ignoreNA))

  def lastNonNull(e: Column): Column = Column(LastNonNull(e.expr))

  def nullIndex(e: Column): Column = Column(NullIndex(e.expr))

  def makeInterval(unit: String, e: Column): Column = {
    val zero = MakeInterval(years = Literal(0), months = Literal(0), weeks = Literal(0),
      days = Literal(0), hours = Literal(0), mins = Literal(0), secs = Literal(0))

    unit.toUpperCase(Locale.ROOT) match {
      case "YEAR" => Column(zero.copy(years = e.expr))
      case "MONTH" => Column(zero.copy(months = e.expr))
      case "WEEK" => Column(zero.copy(weeks = e.expr))
      case "DAY" => Column(zero.copy(days = e.expr))
      case "HOUR" => Column(zero.copy(hours = e.expr))
      case "MINUTE" => Column(zero.copy(mins = e.expr))
      case "SECOND" => Column(zero.copy(secs = e.expr))
      case _ => throw new IllegalStateException(s"Got the unexpected unit '$unit'.")
    }
  }

  def timestampDiff(unit: String, start: Column, end: Column): Column = {
    Column(TimestampDiff(unit, start.expr, end.expr))
  }

  def pandasProduct(e: Column, ignoreNA: Boolean): Column = {
    Column(PandasProduct(e.expr, ignoreNA).toAggregateExpression(false))
  }

  def pandasStddev(e: Column, ddof: Int): Column = {
    Column(PandasStddev(e.expr, ddof).toAggregateExpression(false))
  }

  def pandasVariance(e: Column, ddof: Int): Column = {
    Column(PandasVariance(e.expr, ddof).toAggregateExpression(false))
  }

  def pandasSkewness(e: Column): Column = {
    Column(PandasSkewness(e.expr).toAggregateExpression(false))
  }

  def pandasKurtosis(e: Column): Column = {
    Column(PandasKurtosis(e.expr).toAggregateExpression(false))
  }

  def pandasMode(e: Column, ignoreNA: Boolean): Column = {
    Column(PandasMode(e.expr, ignoreNA).toAggregateExpression(false))
  }

  def pandasCovar(col1: Column, col2: Column, ddof: Int): Column = {
    Column(PandasCovar(col1.expr, col2.expr, ddof).toAggregateExpression(false))
  }
}

/**
 * Helper for making a dataframe from Arrow data from data sent from python over a socket. This is
 * used when encryption is enabled, and we don't want to write data to a file.
 */
private[spark] class ArrowIteratorServer
  extends SocketAuthServer[Iterator[Array[Byte]]]("pyspark-arrow-batches-server") {

  def handleConnection(sock: Socket): Iterator[Array[Byte]] = {
    val in = sock.getInputStream()
    val dechunkedInput: InputStream = new DechunkedInputStream(in)
    // Create array to consume iterator so that we can safely close the file
    ArrowConverters.getBatchesFromStream(Channels.newChannel(dechunkedInput)).toArray.iterator
  }
}

相关信息

spark 源码目录

相关文章

spark ArrayWrappers 源码

spark InMemoryStore 源码

spark KVIndex 源码

spark KVStore 源码

spark KVStoreIterator 源码

spark KVStoreSerializer 源码

spark KVStoreView 源码

spark KVTypeInfo 源码

spark LevelDB 源码

spark LevelDBIterator 源码

0  赞